Formula Sheet

1. National Income Accounting Identity

\[Y = C + I + G + NX \]

2. GDP deflator

\[\text{GDP deflator} = \frac{\text{nominal GDP}}{\text{real GDP}} \]

3. Implicit measure of inflation

\[\text{Inflation rate} \ 2004 = \left(\frac{\text{GDP deflator} \ 2004 - \text{GDP deflator} \ 2003}{\text{GDP deflator} \ 2003} \right) \times 100\% \]

4. Consumer Price Index (CPI)

\[\text{CPI in any month} = \frac{\text{Cost of basket in that month}}{\text{Cost of the same basket in base period}} \times 100 \]

5. Inflation rate (using CPI)

\[\text{Inflation rate} \ 2004 = \left(\frac{\text{CPI} \ 2004 - \text{CPI} \ 2003}{\text{CPI} \ 2003} \right) \times 100\% \]

6. Labor force

\[\text{Labor force} (L) = \text{employed persons} (E) + \text{unemployed persons} (U) \]

7. Unemployment

\[\text{Unemployment rate} \ (U/L) = \frac{\# \text{ of unemployed} \ (U)}{\text{labor force} \ (L)} \times 100\% \]

8. Labor force participation

\[\text{Labor force participation rate} \ (L/POP) = \frac{\text{labor force} \ (L)}{\text{adult population} \ (POP)} \times 100\% \]
9. Steady-state labor market

\[s \times E = f \times U \]

where \(s \) is the rate of job separation and \(f \) is the rate of job finding.

10. Natural rate of unemployment

If you manipulate the condition for the steady-state in the labor market (9), you would get

\[\frac{U}{L} = \frac{s}{s + f} \]

11. Marginal productivity of capital and labor and real prices of capital and labor for the Cobb-Douglas production function \(Y = F(K, L) = AK^\alpha L^{1-\alpha} \):

\[MPK = \frac{\alpha Y}{K} \]
\[MPL = (1-\alpha)\frac{Y}{L} \]

12. Real prices of capital and labor

\[MPK = r \]
\[MPL = w \]

13. National income and total capital and total labor incomes

\[
\begin{align*}
\text{total capital income} &= r \times \bar{K} = MPK \times \bar{K} \\
\text{total labor income} &= w \times \bar{L} = MPL \times \bar{L}
\end{align*}
\]

\[\text{national income} \bar{Y} = \text{total capital income} + \text{total labor income} \]
\[\bar{Y} = MPK \times \bar{K} + MPL \times \bar{L} \]

14. Consumption function

\[C = a + bY^d \]

where \(a \) is the intercept, \(b \) is the marginal propensity to consume (MPC) and \(Y^d \) is disposable income \((Y - T) \).
15. Saving

\[
\text{Private saving} = (Y - T) - C \\
\text{Public saving} = T - G \\
\text{National saving} = Y - C - G
\]

16. Per worker national identity

\[
y = c + i
\]

where \(y = Y/L \), \(c = C/L \), and \(i = I/L \).

17. Per worker consumption function

\[
c = (1 - s)y
\]

where \(s \) is the saving rage (fraction of income that is saved).

18. The equation for motion of capital

\[
\Delta k = sf(k) - (\delta + n + g)k
\]

where \(\delta \) is the rate of depreciation, \(n \) is the population growth, and \(g \) is the rate of technological progress.

19. Steady-state condition in the Solow model

\[
sf(k) - (\delta + n + g)k
\]

20. Income, consumption and investment per person

\[
y = f(k) \\
c = (1 - s)f(k) \\
\text{saving} = i = sf(k)
\]

21. The Golden rule capital stock

\[
MPK = \delta + n + g
\]

22. Sources of economic growth

\[
\frac{\Delta Y}{Y} = \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L} + \frac{\Delta A}{A}
\]
23. The quantity equation
\[M \times V = P \times Y \]
and the quantity equation in percent change
\[\%\Delta M + \%\Delta V = \%\Delta P + \%\Delta Y \]
where \(\%\Delta M \) is the growth of money supply, \(\%\Delta P \) is the rise in prices (inflation), and \(\%\Delta Y \) is the change in real output.

24. Fisher equation
\[i = r + \pi \]
where \(i \) is the nominal interest rate, \(r \) is the real interest rate, and \(\pi \) is the rate of inflation.

25. Money demand function
\[\left(\frac{M}{P}\right)^d = L(r + \pi^e, Y) \]
where \(M/P \) is the real money demand, \(i \) is the nominal interest rate, \(\pi^e \) is the expected inflation, and \(Y \) is income.

26. Seignorage
\[\text{seignorage} = \frac{\Delta M}{M} L(r + \pi^e, Y) \]
where \(\Delta M/M \) is the growth rate of money supply and \(L(r + \pi^e, Y) \) is money demand.

27. Net capital outflows
\[NX = S - I \]

28. Real exchange rate
\[\varepsilon = \frac{e \times P}{P^*} \]
where \(\varepsilon \) is the real exchange rate, \(e \) is the nominal exchange rate, \(P \) is domestic price (price of a good in US dollars), and \(P^* \) is the foreign price (price of a good in foreign currency).

29. Government purchases multiplier
\[\frac{\Delta Y}{\Delta G} = \frac{1}{1 - MPC} \]
where \(MPC \) is marginal propensity to consume
30. Tax multiplier
\[
\frac{\Delta Y}{\Delta T} = \frac{-MPC}{1 - MPC}
\]
where MPC is marginal propensity to consume.

31. IS curve
\[
Y = C(Y - T) + I(r) + G
\]
Def: a graph of all combinations of r and Y that result in goods market equilibrium.

32. LM curve
\[
\frac{M}{P} = L(r, Y)
\]
Def: a graph of all combinations of r and Y that equate the supply and demand for real money balances.

33. IS^* curve
\[
Y = C(Y - T) + I(r^*) + G + NX(e)
\]
Def: a graph of all combinations of e and Y that result in goods market equilibrium.

34. LM^* curve
\[
\frac{M}{P} = L(r^*, Y)
\]
The LM^* curve is vertical since it does not depend on the exchange rate.

35. Money supply
\[
M = C + D
\]
where M is money supply, C is currency, and D is demand deposits.

36. Monetary base
\[
B = C + R
\]
where B is the monetary base, C is currency, and R is banks' reserves.

37. Reserve-deposit ratio
\[
rr = R/D
\]
where rr is reserve-deposit ratio, R is banks' reserves, and D is demand deposits.

38. Currency-deposit ratio
\[
cr = C/D
\]
where cr is currency-deposit ratio, C is currency, and D is demand deposits.
39. Money multiplier

\[m = \frac{cr + 1}{cr + rr} \]

where \(m \) is the money multiplier, \(cr \) is currency-deposit ratio, and \(rr \) is reserve-deposit ratio.

40. Money supply 2

\[M = m \times B \]

where \(M \) is money supply, \(m \) is the money multiplier, and \(B \) is the monetary base.

41. Money demand according to portfolio theory

\[(M/P)^d = L(r_s, r_b, \pi^e, W) \]

where \(r_s \) is the expected real return on stocks, \(r_b \) is the expected real return on bonds, \(\pi^e \) is expected inflation, and \(W \) is real wealth.

42. Money demand according to transaction theory (Baumol-Tobin)

\[
\begin{align*}
\text{average money holdings} & = \frac{Y}{2N} \\
N^* & = \sqrt{\frac{iY}{2F}} \\
(M/P)^d & = L(i, Y, F) = \sqrt{\frac{YF}{2i}}
\end{align*}
\]

where \(Y \) is total spending over a year, \(i \) is the interest rate on savings account, \(N \) is the number of trips consumer makes to the bank to withdraw money from the savings account, and \(F \) is the cost of a trip to the bank.