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ABSTRACT

A class of mean annual, zonally averaged energy-balance climate models of the Budyko-Sellers type are
studied by a spectral (expansion in Legendre polynomials) method. Models with constant thermal diffusion
coefficient can be solved exactly. The solution is approached by a rapidly converging sequence with eachsuc-
ceeding approximant taking into account information from ever smaller space and time scales. The first two
modes represent a good approximation to the exact solution as well as to the present climate. The two-mode
approximation to a number of more general models are shown to be either formally or approximately
equivalent to the same truncation in the constant diffusion case. In particular, the transport parameteriza-
tion used by Budyko is precisely equivalent to the two-mode truncation of thermal diffusion. Details of the
dynamics do not influence the first two modes which fortunately seem adequate for the study of global climate
change. Estimated icc age temperatures and ice line latitude agree well with the model if the solar constant

is reduced by 1.3%,.

1. Introduction

Mathematical modeling of climate has received con-
siderable interest in the last few years, because of the
suspected delicate equilibrium in which the planet now
rests. Schneider and Dickinson (1974) have recently
reviewed the progress to date in modeling efforts. These
authors delineated a large number of possible factors
in global climate change and indicated a hierarchy of
models which may be used to incorporate these
phenomena.

The simplest models treat only global averages and
focus mostly on the radiative transfer properties of the
atmosphere under various perturbations. The next
members of the hierarchy use zonal and annual aver-
- aging but allow latitude dependences of albedo and sur-
face temperature as well as meridional transfer of heat.
In these models it is possible to allow the snow or ice
line to vary dynamically depending on the climate
variables. The ice-albedo feedback mechanism proves
to be of greatest importance because of the large con-
trast in albedo between ice and ice-free areas (Eriksson,
1968). Small changes in the solar constant lead to a
change in global temperature which is amplified several-
fold by the ice-albedo feedback.

Exploration of models of this type by Budyko (1969)
and Sellers (1969) led to several interesting features,
among which is the possibility of an abrupt transition
to a completely ice-covered earth if the solar constant
is lowered by only a few percent. The two approaches
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differed in complexity yet the results proved to be re-
markably similar. The stability properties of these
models has been studied numerically by Schneider and
Gal-Chen (1973). A model of this same family has also
been solved analytically (North, 1975) and the stability
properties studied. The results of this study show that
three equilibrium climates (Budyko, 1972; Chylek and
Coakley, 1975) obtain with the present value of the
solar constant. The present climate as well as an ice-
covered earth climate are stable under small perturba-
tions from equilibrium while an intermediate solution
with earth about two-thirds covered with ice is unstable
and therefore of no physical significance.

Higher members of the hierarchy include global cir-
culation models (GCM) which might even incorporate
circulation of the oceans.

The primary focus of this paper will be an analytical
study of the class of models first studied by Budyko
and Sellers. A fundamental question is how much detail
is necessary in the empirical input to guarantee reliable
results from the models. This problem is approached by
solving a class of such models by spectral methods. The
exact solution is approached by a rapidly convergent
sequence of approximations with each succeeding ap-
proximant incorporating information from successively
smaller scales.

The connection between various members of the hi-
erarchy is brought out as it is found that global climate
requires only very large space and time scales for an
adequate description, while many complications which
might be thought to be important are excluded because
of scale mismatches.
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2. Model

In order to set up a simple energy-balance climate
model it is necessary to assume that all energetic fluxes
can be parameterized by the temperature at the earth’s
surface (sea level). For example, although the charac-
teristic temperature of the earth as a radiating body is
determined by the temperature of the atmosphere far
above the surface, this temperature is linearly related
to that at the surface by the assumption of a constant
lapse rate. The empirical formula used in this study is

I=A+BT, (1)

where I is the outgoing infrared radiation flux (W m=2)
T the surface (sea level) temperature (°C), and
A=2112 Wm2 B=155 W m=2 (°C)~.. The con-
stants 4 and B are derived from linearizing the Sellers’
radiation formula (Sellers, 1969) about 0°C. The linear-
ization is reasonable here because |T| never exceeds
30°C for climates of interest, and in this range it ap-
proximates the Sellers’ formula to within 19. The con-
stants 4 and B are a few percent larger than those
suggested by Budyko (1969) and used by North (1975).

The latitude is most easily characterized in terms of
the variable x, which is the sine of latitude. The in-
finitesimal dx is proportional to the area of a strip
parallel to the latitude circle z. The formula (1) is as-
sumed to hold for each latitude x so that I and T are
considered to be functions of x. :

The absorbed solar heating is given by the form

0S(x)a(x,%,), where Q is the solar constant divided by -

4, S(x) is the mean annual meridional distribution of
solar radiation which is normalized so that its integral
from O to 1 is unity, and the absorption coefficient
a(x,x,) is one minus the albedo of the earth-atmosphere
system. The quantity x; is the sine of latitude of the
" ice or snow line. The function S (), which is determined
from astronomical calculations, is uniformly approxi-
mated within 29, by

§ () =1+S2Py (), (2)

with Sp= ~0.482 (North, 1975), and P, (x) is the second
Legendre polynomial, (3x2—1)/2. The first term insures
the normalization since the second term vanishes upon
integration from 0 to 1. The absorption function used is

b(), x> Xs
alw,xs) = (3)
aotasPa(x), x<w,

where 5;=0.38 is taken from Budyko (1969) as the
absorption coefficient over ice or snow 509, covered
with clouds, and @;=0.697, ay= —0.0779 come from
Fourier-Legendre analyzing the albedo distribution used
by Sellers (1969). The latitude-dependent albedo mani-
fested in a2P2(x) over ice-free areas takes into account
zenith angle dependences as well as the nonhomo-
geneous mean annual cloud distribution. Budyko (1969)
and North (1975) used a2 =0 and a smaller value for a,.
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Eq. (3) still differs from Sellers’ absorption since he
allows by to have a temperature dependence. The
present model remains soluble even with such a de-
pendence, but the solutions will not be discussed here.

The ice line is determined dynamically in this model
by the condition (Budyko, 1969)

T> —10°C,
T<—10°C,

1o ice present
(4)

ice present
In terms of the function 7(x) this condition reads
I{x)=1,=195.7 W m™2, (5

which follows directly from (1) and (4).

In equilibrium at a given latitude the incoming ab-
sorbed, radiant heat is not precisely matched by out-
going radiation—the difference being made up by the
meridional divergence of heat flux. In the present study
this flux divergence will be modeled by —v-(DvT),
where D is a phenomenological thermal diffusion coeffi-
cient (Adem, 1962; Fritz, 1960). In terms of the vari-
able x this quantity becomes (in spherical coordinates)

d d
——(1—4")D—T (), (6)
dx dx :

where a factor of earth radius squared has been ab-
sorbed into D.

In most models it is more convenient to use I(x) as
the dependent variable rather than the surface tempera-
ture T'(x). The two are related by Eq. (1), and in the
interpretation of results they may be thought of
interchangeably.

The energy balance equation may then be written in
a time-dependent form:

Al (x,t)
C
at

—i(l —xQ)DiI (x,)+1(x,t)
Jx ox
=0S(@)alxxs), (7)

where the factor C is the heat capacity of the relevant
layers of the atmosphere plus hydrosphere divided by
B from Eq. (1), and D has likewise absorbed a factor
of B. In Eq. (7), D is dimensionless and C has units of
time; it therefore-establishes the time scale. Eq. (7),
coupled with the condition (5) and simple boundary
conditions at x=0 and 1, completely specify the prob-
lem. Of major interest is the question of how the solu-
tions behave as a function of .

It has been shown (North, 1975) that Eq. (7) can be
solved analytically in the case of constant D. The results
indicated that three climates obtain for the present
value of Q: the present climate, an ice-covered earth
solution, and an intermediate case with earth more than
half-covered with ice. A linear stability analysis showed
that the present climate and the ice-covered earth are
stable under small perturbations while the intermediate
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solution is unstable, and, therefore, of no intercst. An
interesting consequence of the stability analysis was
that small departures from the stable solutions decayed
back to cquilibrium exponentially in time. This relaxa-
tion time is characterized by the thermal inertia coeffi-
cient C in (7). These results are consistent with the
numerical experiments of Schneider and Gal-Chen
(1973) as well as the recent GCM results reported by
Manabe and Wetherald (1975). For an earth covered
with water 75 m deep the characteristic time for decay
is about 7.4 years, This depth corresponds roughly to
the annual average of the mixed layer thickness
(Schneider and Dickinson, 1974).

3. Solution by spectral method

The expansion of latitude-dependent variables in
Legendre polynomials was applied to simple climate
models as long as 15 years ago (Tritz, 1960). However,
the recent studies of climate models seem to have over-
looked this powerful technigue. The Tegendre poly-
nomials have the special advantage that they are the
gigenfunctions of the spherical diffusion operator:

d d
—(1—2)—P,(x)= —nn+1)P.(x). (8)
dx dx

A mean annual model with symmetric hemispheres
must satisfy the boundary condition that the gradient
of T(x) [or I(x)] must vanish at pole and equator.
Each even-indexed P,(x) has zero gradient at the pole
and equator, i.e.,

17
(1—5%% —P,(x)=0; x=0,1, )
dx

which means that if T(x) [or T'(x)] is written

Ix)= ¥ I.P.(x),

n even

(10)

the expansion will satisfy the boundary conditions term
by term. This property is important since the serics (10)
may be truncated at any order without violating the
boundary conditions. Only even terms are required in
(10) since /{x) is an even function of ¥ in a mean annual
model with symmetry between hemispheres. Odd terms,
however, would be necessary in a scasonal model in
order to account for a gradient of I(x) at the equator.
To find equilibrium solutions of the model, we set
3I/ dt equal to zero, and substitute (10) into (7). After
making use of the orthogonality of the P, we obtain

Cn(n+1)D+117.=QH . (x.,), (11)

where

II.(x)=(2n+1) / . S(x)alw,x,) Pula)de.  (12)

The H,(v,) [insolation componenis] may be found
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analytically from the known forms of S(x) and a(x,x,);
the results are polynomials in ;. A convenient form for
the first few H,(x,) will be given in the Appendix.

The first few realizations of (11) are:

Iy=QH(x,), n=0 (13)
(6D+1)12=Q52(ZX25), n=2 (14)
0D+ 1)1 ,=0QH y(x,), n=4. (15)

Eq. (13) has a simple interpretation; it is the statement
that the planetary average temperature is given by the
integral of absorption weighted by the meridional dis-
tribution of solar flux. The transport property D does
not enter (13) since the planetary average of meridional
flux divergence must vanish. The second mode ampli-
tude I, is roughly a measure of the equator-to-pole
temperature difference, and this quantity is influenced
by the strength of the meridional heat flux, D. Higher
modes are suppressed because of the n(n-+1) factor on
the left of (11) and the fact that insolation components
H ,(x,) fall off rapidly as a function of #.

If the C(dI/dt) term is retained in (7), Eq. (11) has
an additional term equal to +CI, on the left-hand side
(dot refers to time derivative). To get an idea of the
time scales for different modes let Q suddenly vanish.
The decay time for mode # is C/[#n(n+1)D+1]. The
higher modes are quickly dissipated by the diffusive
transport mechanism. Presumably these times also
characterize the adjustment to any new value of Q. It
is not unexpected that smaller space scales adjust
quickly to external changes, while large scales respond
slowly.

The ice line is determined by (11) and (5), which
may be expressed as

I,= 3 I,P.(x;).

n even

(16)

The function of primary interest is the ice edge «; as a
function of Q. Since it is known (Budyko, 1972; Chylek
and Coakley, 1975) that this is a multiple-valued func-
tion it is much more convenient to reverse the question
and ask for Q as a function of «, since this is a single-
valued function (North, 1975).

To solve the model, given x,, we divide (11) through
by the coefficient of 7, then multiply each side by
P, (x;) and sum. The resulting left-hand side is the state-
ment (16). Solving for Q(x,) we obtain

Iln(xs)P"(xs) -
Q(x.s) - Is[n ;en m:l '

Eq. (17) may now be inserted into (11) to calculate
any mode amplitude, given x,. When all modes are re-
tained, Eq. (11) is equivalent to the exact expression
given earlier (North, 1975) which involved hypergeo-
metric functions.

Now let us consider the two-mode truncation of the
series (10), (16), (17). The present climate may be

(17
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Fic. 1. Sea level temperature as a function of latitude for the
present climate. Circles represent observations (Sellers, 1965).
The solid line is the temperature calculated from the two-mode
approximation. The dashed line illustrates how a third-mode
(n=4) contribution of proper amplitude (—5°C) would improve
the agreement; the latter was not claculated from the model.

computed from this system of three equations. Eq. (13)
may be used to compute the hemispheric average tem-
perature. Inserting Q=334.4 W m—2, x,=0.95, H¢(0.95)
=0.698, we obtain [,=233.4 W m™2 or T9=14.3°C.
The second mode amplitude may be computed from the
two term version of (16):

Is—_—Io-*-Isz(xs).

The result is Io=—44.02 W m~2 which corresponds to
Ty=—28.4°C. Fig. 1 shows a plot (solid line) of the
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FiG. 2. The sine of latitude of the ice edge, x, as a function, of
the solar constant in units of its present value for the constant
D model. The two- and three-mode approximations are shown.
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T1c. 3. Radiant energy absorbed by the earth-atmosphere sys-
tem. Circles represent satellite observations (Raschke et al., 1973)
slightly corrected to match the solar constant used in the model
rather than that used in data analysis. The solid line represents
the heat absorbed as used in the model input. The dashed line is
the absorption as sampled in a two-mode approximation.

corresponding temperature distribution vs x. The agree-
ment with observations is surprisingly good considering
the crudeness of the model. The heat transport coeffi-
cient D may now be computed from (14) since 7, is now
known ; the value of H5(0.93) is —0.434, leading to the
result D=0.382.

The two-mode truncation of (17) is

LLELLD)

Qxs)=1 s[H olees)+
6D+1

Fig. 2 shows the comparison of the two-mode function

(18) with the three-mode approximation similarly

obtained.

The satellite observations of solar heat absorbed by
the earth-atmosphere system are shown in Fig. 3. With
these data are shown the model input values computed
from the right-hand side of (7). Also shown is the sum
of the first two Fourier-Legendre components, which are
all that contribute to the two-mode solution. This latter
should not be considered an approximation to the insola-
tion but rather the only part that plays a role in de-
termining o, I5, Q(x,), etc., in the two-mode approxima-
tion. It is interesting that although the input albedo has
a strong discontinuity at x., the few-mode projections
smooth out this break. The few-mode projection in this
case more closely resembles nature than the hypotheti-
cal input.

S
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Perhaps the most critical measure of the internal con-
sistency of the model comes from a computation of the
total heat flux crossing latitude x. In the two-mode ap-
proximation this function /'(x) has the simple form

F(x) = (6rR:B)x(1—a?) T1D, (19)

where B is defined in (1), R is the radius of the earth,
To=~28.4°C, and D=0.382 as computed earlier. Fig. 4
shows the results (solid line) compared with the obser-
vations (Sellers, 1965). F(x) is very sensitive to the
value of D computed. In the case of the Budyko albedo
and radiation formula, D is too small by about 259,
(North, 1975). The reason for the extreme sensitivity
is that the meridional flux divergence is the difference
between much larger quantities representing incoming
and outgoing radiant energy. The maximum of F(x) is
only about 5%, of the energy insolated by the hemi-
sphere (Sellers, 1965).

The dashed line in Fig. 1 shows a three-mode fit to
the present temperature distribution. The value of T4
is assumed to be —5°C; Ty and T are taken from the
two-mode solution. Clearly a third-mode contribution
has the right form to approximate better the present
climate. If the constant D model of this section is used
to calculate Ty, the value has the right sign but is only
about —0.5°C, Also the third-mode contribution dis-
torts the F(x) curve (Fig. 4) toward a better fit but the
improvement is not significant. The source of error in
the third mode comes from the low quality of input in
the albedo and radiation formula as well as the diffusion
hypothesis itscll. The way in which the details of the
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Iic. 4. Total heat flux crossing latitude circles. Circles repre-
sent obscrvalions (Scllers, 1965) and the solid line is computed
from the two mode approximation [Eq. (19)7].

NORTH 2037

TaBLE 1. Values of ice edge (xs) versus derived, necessary solar
constant in units of the present solar constant Qo (1338 W m2 or
1.92 cal cm™2 min™?) for a constant D model. Also shown are the
hemispheric average temperature 7. The subscript outside the
parentheses denotes the number of modes retained. Corresponding
values of T may be computed from the relation Ty=— (ZT0--10)/
P 2(-’4\73)-

Xs (Q/ Qo) 2 (Tu)z (Q/ Qn)s (To)a
0.60 0.959 —8.54 0.969 —7.20
0.65 0.961 —5.15 0.967 —4.35
0.70 0.966 —1.62 0.967 —1.44
0.75 0.977 1.95 0.970 1.62
0.80 0.980 5.43 0.976 4.89
0.85 0.987 8.71 0.985 8.31
0.90 0.994 11.70 0.994 11.64
0.95 1.000 14.32 1.000 14.34
1.00 1.005 16.57 0.999 15.53

dynamics first emerge in the third node will be elabo-
rated in the following sections. Fortunately, two modes
give a very good estimate of the present climate and
may be all that is necessary for the study of global
climate change.

A simple characteristic predicted by climate models
is the sensitivity coefficient Q(dto/dQ), which gives the
global average temperature change ATy resulting from
an infinitesimal fractional change in solar constant,
AQ/Q. This quantity can be estimated from Table 1 to
be about 400°C for the two-mode approximation, cor-
responding to a 4°C drop in T if Q is lowered by 1%.
Retention of a third mode changes this number on the
order of 10-209,. The difference should not be con-
sidered significant, but rather a rough measure of the
uncertainty. It is significant, however, that the sensi-
tivity coefficient is only 140°C without ice-albedo feed-
back. Amplification by ice-albedo feedback disappears
as x,; approaches 1.

4. Budyko transport and the spectral solution

One objective of the present study is to understand
the relationship among various members of the model
hierarchy. The transport parameterization of Budyko
(1969) comes from an analysis of empirical data. A form
of the mean annual meridional heat flux divergence
which matched observations was found to be

BLT ()T,

where T (x) is the mean temperature, at latitude whose
sine is ®, T, is the hemispheric average temperature,
and B is an empirica! constant found by Budyko from a
scatter diagram.

We now consider the diffusive heat divergence
operator

(20)

d d
—D—(1—xH)—
dx dx

applied to a two-mode temperalure distribution,
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T(x) =To+T2P2(x) ; there results

Identifying 6D with 8 and noting that Ty=T,, it follows
that the two-mode solution to a constant D model treats
the transport of heat in the same way as does Budyko.
Using Budyko’s value $=0.235 K cal cm™ month™!
per degree latitude, we may compute the correspond-
ing dimensionless D used here. The result from
converting the units is D=0.402 to be compared with
the value 0.382 found self-consistently in the last
section.

Budyko (1974) comments that while (20) works well
on a mean annual basis the value of 8 must have a
seasonal dependence to account for heat advection for
individual seasons. The above analysis can shed light
on this problem if the advection is actually diffusive.
The reason for the failure under this assumption is due
to the presence of odd index modes in the individual
seasonal temperature distributions. For example, if
T1P1(x) is present in 7'(x), Eq. (20) no longer follows
from a diffusion model. The presence of T1P:i(x) also
accounts for the failure of the form (20) to match the
data in the tropics for individual seasons (Budyko,
1974). D may also have a dependence on T'» which varies
enormously from one season to the next, but is of little
significance to climate change in a mean annual treat-
ment (to be shown in a later section).

5. Possible latitude. dependence of D

Latitude dependence of ocean boundaries, mountains,
persistent zones of baroclinic instability, and large-scale
Hadley circulations indicate that D might require an x
dependence, say D= D,f(x). First consider a two-mode
approximation by inserting the usual truncated series
(10) into the time-independent form of (7). After multi-
plying by (2n41) P, (x) and integrating from O to 1, we
find that Eq. (13) is unaltered.

Eq. (14) is also unaltered except that D in that ex-
pression is replaced by D’ which may be computed from

L d d
D =——5D0/0 Z%(x)a[(l—x )f(x)al’g(x):ldx (22)

Now since the integral in (22) is a constant number
calculated once and for all, it may be absorbed into the
phenomenological constant Dq. The parameter Ds is to
be determined self-consistently as before so that the
case D= D,f(x) is formally equivalent to the constant D
case in two-mode approximation.

Any x dependence of D will make a difference if an
n=4 mode is retained in the analysis. Such a form will
couple the =2 and »=4 modes, but as we have seen
it does not couple the #=0 and #=2 modes.

The agreement of the constant D model with obser-
vations shown in Fig. 4 indicates that D probably is
constant as a function of x, at least on a mean annual
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basis, since any x dependence would modulate the
x(1—2a?) form of the curve and weaken the agreement.
If D were given the form Do+ D2P2(x), we could pos-
sibly reproduce the value T's= —5°C mentioned in the
last section by adjusting the ratio Do/D,. The addition
of another adjustable parameter does not seem justified
considering the other uncertainties in the model.

6. Inclusion of systematic circulation effects

In the tropics the constant diffusion hypothesis does
not hold for the individual agents of transport in the real
atmosphere. For example, atmospheric sensible heat is
actually carried toward the equator in very low lati-
tudes. Such large-scale effects might be modeled by
including a heat energy flow term on the left of (7).
Following Sellers (1969) we might add a term of the
form V(x)(1—x%%(d/dx)I(x) to simulate this type of
heat flux divergence. The dimensionless meridional
velocity V (x) is to be determined empirically by fitting
the transport of sensible heat by the atmosphere.

We now consider the two-mode approximation to the
new system. If the velocity field V(x) is divergenceless,
Eq. (13), for the =0 mode, is unchanged. The formal
interchange of V and v must be done before zonal and
vertical averaging process, since the condition of di-
vergence-free V () is too constraining in one dimension.
Multiplying the new (time-independent) form of (7)
by (n+1)P.(x) and integrating from 0 to 1, we obtain
in place of (14):

1

(6D+1)Io+1,5 / V(%) Po() (1 —22)}(3x)dx = QH (xs).

0

No matter what the functional form of V(x) is, the
integral is a constant and it may be absorbed by the
phenomenological coefficient D.

The argument above can be readily extended to the
case of latent heat transport and oceanic heat transport.

The conclusion is that any organized (non-turbulent)
transport by a divergence-free velocity field cannot be
distinguished from diffusion in the two-mode approxi-
mation -to a zonally averaged model.

7. Nonlinear diffusion of heat

Since atmospheric meridional circulation is presum-
ably driven by the temperature differences from one
latitude to another, it is not unreasonable to suppose
that D might be linearly related to the local gradient of
T(x). Stone (1973) presents arguments based on sea-
sonal data that this might be the case. In two-mode
analysis it may be shown (as in the previous sections)
that the local gradient may be replaced by [7(1)
—T(0)], the equator-to-pole temperature difference. In
the two-mode problem this is equivalent to the
replacement

D=K+Kl.. (23)
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When (23) is inserted into (14) we see that only the
swm D is determined by fitting the present climate. The
relative weights of K and K3 may be chosen from other
empirical considerations. It is interesting that in the
two-mode analysis the fit to present climate (Fig. 1 and
Ilig, 4) is the same as the constant D case independent
of the ratio K/K». Once this ratio is chosen we obtain
for Eq. (14):

(6I(+1)[2+6K2[22=QH2(xs)- (24)

Egs. (13) and (18) may be used to eliminate I» in (24);
the result is a quadratic equation for Q:

aQP+BQ+y =0, (25)

where

a= 6K2H02
f=— (6K +1)HoPs— 12K IT I — H,Ps b,
v=(OKF+1DIP+0K 13

and the functions Hg, Ha, Ps are 1o be evaluated at ..
Xq. (25) admits two roots, one of which may always be
rejected on physical grounds, since it has the poles
warmer than the equator (73>0) while the model
automnatically (and incorrectly here) places the ice
albedo north of x,. The physical branch of the Q(x;)
curve is remarkably close to the constant D case illus-
trated in Fig. 2. The special but extreme case of
D=K,T> with K, seli-consistently determined to be
—0.0130 is illustrated in Table 2. These values are to
be compared with the linear diffusion case illustrated
in Table 1. Though it is not shown hcre, a similar in-
sensitivity appears when D takes the form K4-K/o.
The explanation of the insensitivity to nonlinear dif-
fusion mechanisms can be constructed as follows. The
formula (18) is a correct expression even if D is an
arbitrary function of Iy, s, or a,. It is only an implicit
algebraic expression, however, since D now depends on
Q through D’s dependence on Iy, 1. The only constraint
on D is that it assumes the value 0.382 at x,=0.95, the
present climate. As x, is lowered from 0.95 the second
term in parentheses of (18) diminishes because of the
factor Py(x,), In fact, this term vanishes at the zcro of
Ps(x,) which occurs at x,=3"%=0.577. Hence Q(x,) be-
comes independent of D at x,=0.577. This value of x,
is very near the transition to ice-covered earth in all
the models studied thus far. This universal value of Q
is given by
QB H=I./H,(3™),

independent of the form or value of D. Now since
0(0.95) is fixed by the present climate and Q(37%) is
fixed by (26) we can conclude that the function Q(x,)
is qualitatively unaffected by the details of the transport
mechanism.

The critical value of I or planetary average tempera-
ture at a,=3"% can be computed from (13) by inserting
(26); the result is that Jo=7, or Ty=—10°C. In other
words, the transition to an ice-covered earth occurs

(26)
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TaBLE 2. Asin Table 1 except D has the nonlinear form —0.01357,.
These results are for the two-mode approximation.

X Q/Qo Ty
0.60 0.957 —8.76
0.65 0.958 —5.51
0.70 0.962 —2.12
0.75 0.968 1.35
0.80 0.975 4.76
0.85 0.985 8.42
0.90 0.992 11.40
0.95 1.000 14.32
1.00 1.016 18.23

when the planetary average temperature is lowered to
approximately the temperature which determines the
snow line.

Examination of the quadratic (25) shows that it also
gives the value (26), when x,=37%

It is also possible to treat the cases described above
in a three-mode analysis. The resulting equation for
Q(x,) becomes a cubic [analogue to (25)]. In this case
two of the three roots are unphysical and the third
closely resembles the two-mode case. The correc-
tions to two-mode results are again small and about the
size of those in Table 1 for the constant D case. The
nonlinear effects do not introduce significant distortions
through the coupling of higher modes.

It is not difficult to carry out a linear stability analysis
about the equilibrium solutions using the time-depend-
ent Eq. (7). The method has been illustrated previously
(North, 1975) and will not be repeated here. It suffices
to say that in two-mode analysis the nonlinear effects
do not affect the stability rules already established, i.e.,
that the present climate as well as the ice-covered earth
solution are stable, while the intermediate branch
(0<%, <37%) is unstable under small perturbations away
from equilibrium.

While this analysis shows that nonlinear diffusion is
not important in long-term global climate change, it is
likely to be important in seasonal models. To see this
contrast, compare the change in equator-to-pole tem-
perature difference from winter to summer (58°C to
38°C) with the changes in mean annual values from the
present to ice age conditions (43°C to 33°C).

8. Transport suppressed by ice cover

Another form of the diffusion coefficient which might
have an important effect on climate change is the possi-
bility that heat advection by the oceans is suppressed
when they are covered with ice. A simple form for the
diffusion coefficient under these circumstances is

D=Dy+Dyh(x,xs), 2n

where &(x,x;) is a step function having the value 1 for
x<x; and O for > x,. While this model may be solved
exactly as indicated by North (1975), we proceed in the
spirit of the last few sections of this paper with a two-
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TasLe 3. As in Table 1 except the model has a step function D
suppressing transport north of x, by the fraction denoted by the
subscript outside the parentheses. All results shown are for two-
mode approximation.

Fe (Q/Q0)o.s (To)o.3 (Q/Q0)1.0 (To)1.0
0.60 0.960 —8.32 0.966 —17.56
0.65 0.966 —4.49 0.980 —2.58
0.70 0.972 —0.74 0.990 1.76
0.75 0.979 2.88 0.996 5.30
0.80 0.985 6.23 0.999 8.22
0.85 0.991 9.13 1.000 10.58
0.90 0.996 11.98 1.000 12.56
0.95 1.000 14.32 1.000 14.32
1.00 1.004 16.37 1.002 16.14

mode analysis. A straightforward analysis shows that
(13), (14) and (18) are still valid except that D is re-
placed by J(x,), which is given by

J (%) = 3Dy (2 — 3x,°) + D (28)

As in the previous section Dy and D, are constrained by
the fit to the present climate, i.e., J(0.95) =0.382. Using
this constraint plus the demand that D; be about 309,
of (D¢+Dy) in accordance with the fraction of energy
carried by oceans, we obtain Dg=0.250 and D;=0.107.
Table 3 shows the resulting Q(x,), To(xs), and Ta(xs)
values for this model. The argument from the preceding
section explains the insensitivity to this nonlinear effect.
As an extreme illustration the case Doy=0 (no heat
transport over ice) is also shown in Table 3. This case
is rather different from the others since the curvature
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Fic. 5. Outgoing infrared energy flux versus latitude. Circles
represent satellite data (Raschke et al., 1973), and the solid line
is computed from the two-mode approximation. Discrepancies
are attributed to the radiation formula (1); see text.
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of the Q(x,) function is difierent near x,=0.95. This
extreme case is probably not well approximated by the
two-mode analysis since the temperature is surely other
than quadratic in x near the ice edge.

9. Effects of nonhomogeneous cloudiness

Fig. 5 shows the computed outgoing radiation flux
compared with satellite data (Raschke ef al., 1973). The
formula (1) cannot possibly reproduce the finestructure
of the data since the observed 7'(x) is nearly quadratic
in x. The discrepancy must lie in the effects of nonhomo-
geneous cloudiness, lapse rate, absolute humidity, etc.’
The present study seems to focus the difficulty directly
on the radiation formula rather than on transport phe-
nomena. This section will resolve the discrepancy of
Fig. 5 and show that the results of the previous sections
are unaffected by the necessary modifications.

If nonhomogeneities in lapse rate or opacity to in-
frared radiation are responsible for the difficulties shown
in Fig. (5), we may modify (1) by allowing 4 and B to
be functions of x. Such an approach is consistent with
both the Budyko (1969) and Sellers (1969) approaches.
It is also consistent with a formula suggested by Manabe
and Wetherald (1967) based on a model atmosphere
calculation. If observed clcudiness (Sellers, 1965) is
inserted into any of the three empirical formulas the
satellite results are not well reproduced. However, our
approach will be to allow 4 to be a function of #, and
to find this function directly from the satellite data.

The function 4 (x) may be found most easily by a
Fourier-Lengendre analysis of the difference of the two
curves in Fig. 5:

A@)= 2 AuPalw),

n even

(28)

where 4, is the constant value used in the earlier sec-
tions of this paper and A4, is found to be 0.84 W m™2 The
inclusion of only the first two terms of (28) does not
change the quadratic shape for the function I(x), so
that many higher order terms are required to reproduce
the structure of the data. It is interesting to note, how-
ever, that when the two-mode approxmation is applied
to the energy balance equation, only the 4o and A:
amplitudes are coupled to the solutions Iy and Is. All
higher order terms, no matter how large, are not coupled
to the two-mode temperature amplitudes. The situation
is analogous to the case of an x dependent diffusion
coefficient studied earlier. Though the details will not
be given here, the new formula for Q(x,) in the two-
mode approximation when all terms of (28) are re-
tained is

A2Ps(x,) :l, (29)

Q(xs)=Qo(xs)[l+m

where Qo(x,) is given by (18). The second term in
the brackets of (29) has a value of about 0.001 for the
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present climate, and becomes smaller as x, decreases.
The conclusion is that the outgoing radiation formula
may be modified to fit the data to any desired accuracy
without having a significant effect on any of the two-
mode calculations in this paper.

It is likely that the constant B should also be a func-
tion of «, though this cannot be uniquely extracted from
Fig. 5. In the event that such dependence can be ex-
tracted from future satellite data (for example, of sea-
sonal variation), it will be neccssary to include both the
¥ourier-Legendre components By and B, in the two-
mode approximation.

10. Ice age conditions

The last major advance of the ice sheet corresponded
to a mean annual ice-covered arca of about three times
the present mean annual value. Tn terms of the model
the ice age called for x,=0.85. If we insert these values
into (18), using Hy(0.85)=0.680, H,(0.85)=—0.493,
we obtain ((0.85)=331.0 W m 2 which is 1.3%, lower
than the assumed present value. The calculated plane-
tary average temperature, T0=8.7°C, is 5.6°C below
the present value. The temperature at the equator is
lowered by 3.8°C while at the pole the reduction is
9.3°C. These figures seem to be in good agreement with
the cstimates of paleotemperatures given by Flint
(1971) of 6, 3 and 20°C, respectively. The large dis-
crepancy at the pole may be due to the coupling of
higher modes, or the suppression of oceanic heat trans-
port across ice-covered areas. From Fig. 1 it is clear that
the largest crror incurred in a two-mode truncation is
at the pole; convergence is poorest at the pole because
P, (x) assumes its maximum value (unity) at x=1.

Though the agreement of the constant D model
coupled with an effective decrease of Q by 1.3% is very
good, it could hardly be considered a unique explanation
al this time. It may be, for example, that similar re-
sults can be obtained from a study of natural fluctu-
ations of the climate at constant Q. Such self-induced
fluctuations might require a number of non-equilibrium
feedback effects not necessary in the quasi-equilibrium
treatment of the earlier sections of this paper. For ex-
ample, the thermal inertia coefficient is likely to be a
function of surface temperature, since the thermally re-
sponding layers of the occans would probably thicken
as the temperature is lowered. Also, the ice line #, is
not likely to be determined by the instantaneous tem-
perature distribution, but rather to be lagged because

- of melting time constants, etc.

11. Conclusion

A simple model in the spirit of earlier systems pro-
posed by Budyko and Sellers has heen presented and
solved analytically by a spectral method. A sequence
ol approximations is found in which each succeeding
correction incorporates ever smaller space and time
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scale effects. The mechanism for heat transport is based
upon a turbulent diffusion approach which is formally
equivalent to that of Budyko in the two-mode approxi-
mation. After the transport coefficient is determined
self-consistently from the present temperature distribu-
tion, the model predicts very accurately the total heat
transport across latitude circles.

The model has proved to be remarkably insensitive
to various generalized forms of the diffusion coefficient
such as latitude, temperature, temperature gradient,
and ice line dependences. In fact, nonhomogeneous
features incorporated in the outgoing radiation formula
also appear to have an insignificant affect.

Even though the fit with the present climate is good
for the two-mode model, considerable uncertainty exists
even in the two-mode input data. The satellite data
have not had enough sampling time, and certainly the
coefficients in the radiation formula (1) are not known
well enough to take even these results literally, Even
the solar constant to be used is not agreed upon by the
various climate modelers. The values of solar constant
(Q), radiation parameters (4, B), and albedo param-
eters (@o, a2, bo) cannot be changed independently with-
out changing the planetary average temperature (lowest
mode output). Most of these parameters are not actually
known to better than 5%,.

Achieving accuracy at the third-mode level must in-
volve a multitude of hypotheses which are not necessary
in a two-mode analysis. Only one or two adjustable
parameters in such hypotheses (right or wrong) would
be necessary to bring the T, amplitude to its observed
value while simultaneously improving the fit to the
energy transport F(x). The obvious non-uniqueness of
such a procedure, however, implies that it may be pre-
mature at this time.

Fortunately, in the solvable few-mode models we
have studied, the third mode has little influence on
climate change. Therefore, the two-mode model pro-
vides a useful framework for incorporating updated
empirical information in future modeling efforts. The
two-mode scheme should also be useful in describing
the gross effects of cloud feedback mechanisms once
these inputs are more clearly understood.

The few-mode models discussed in this paper seem
capable of describing the present climate and ice age
conditions with surprising accuracy. It is interesting to
speculate, after the fact, as to why such a crude scheme
works so well. One possibility is the following. We notice
that global climate description on a mean annual basis
requires only two modes (meridional length scales of
the order of 12,000 km) and the corresponding time
scales are of the order of one to two months. On the
other hand, the atmospheric fluctuations responsible for
heat transport have meridional length scales of the order
of the amplitude of the Rossby wave scale (1000 km)
and autocorrelation times of the order of three days.
These two coupled systems are then grossly mismatched
in both length and time scales. In this case the heat
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transport may be well approximated by a random walk
process for purposes of studying global climate change.
Use of a diffusion coefficient is known to correctly
model the ensemble averages of quantities under the
influence of a random walk transport agent.

The above argument has least credibility when ap-
plied to oceanic transport. In this case the transport is
more organized and may resemble diffusion only in the
first few modes.

After this paper was written an interesting study of
Budyko-type models by Held and Suarez (1974) ap-
peared. These authors pointed out that the meridional
temperature distribution in Budyko’s model has a dis-
continuity at the ice line. This peculiar behavior is
naturally removed by the spectral method employed
in the present paper. This difficulty in Budyko’s original
treatment may now be traced to the fact that only two
modes are effectively retained in the horizontal flux
divergence term while all modes are retained in the
insolated heat term of the energy-balance equation.
Held and Suarez also noticed that constant D models
can be solved analytically. In addition, these authors
examined numerically a case with D proportional to
temperature gradient with results agreeing with the
present conclusions drawn from the two-mode approxi-
mation. The lack of sensitivity to such nonlinear effects
is also supported by recent numerical experiments per-
formed by Gal-Chen and Schneider (1975).
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APPENDIX
Insolation Components

One advantage of the spectral method is that virtu-
ally all computations can be done by hand if only a few
modes are retained. The computations are simplified if
some of the functions used are given in tabular form.
The formulas and tables in this appendix should
make it easy to test the effects of alternative param-
eterizations or hypotheses through the third-mode
approximation.

TABLE Al. Values of the incomplete integrals over Legendre poly-
nomials. Gii(%s) is defined in the Appendix.

Xs Gooz Gozz Goos Goat Gaze Gaos
0.60 —0.1920  0.0770 0.0230 —0.0323 —0.0330 0.0169
0.65 —0.1877 0.0774 0.0020 —0.0341 —0.0330 0.0167
0.70 —0.1785 0.0791 —-0.0192 —0.0380 -0.0326 0.0160
0.75 —0.1641 0.0834 —0.0385 —0.0435 —~0.0314 0.0144
0.80 —0.1440 0.0913 —0.0533 —0.0494 —0.0281 0.01206
0.85 —0.1179  0.1051 —0.0607 —0.0531 -—0.0209 0.0101
0.90 —0.0855 0.1262 —0.0571 —0.0507 —0.0071 0.0118
0.95 —0.0463 0.1570 —0.0384 —0.0358 40.0172  0.0236
1.00 0.0 0.2000 0.0 . 0.0 0.0571  0.0571
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TaBLE A2. Values of functions required for hand computations
of Q(x), To, T2, Ty in all models retaining up to three modes.
Albedo parameters used are ag=0.697, a;=—0.0779, by=0.380.

s H, H, HaPo Hs HP,
0.60 0.6174 —0.5825 —0.0233 0.1384 —0.0565
0.65 0.6323 —0.5761 —0.0771 0.0821 —0.0352
0.70 0.6461 —0.5635 —0.1324 0.0295 —0.0121
0.75 0.6587 —0.5452 —0.1874 —0.0145 —0.0051
0.80 0.6703 —0.5222 —0.2402 —0.0344 0.0106
0.85 0.6806 —0.4952 —0.2801 —0.0593 0.0030
0.90 0.6898 —0.4656 —0.3320 —0.0536 —0.0112
095 06977 —0.4345 —0.3709 —0.0272 —0.0151
1.00 0.7045 —0.4031 —0.4031 0.0193  +40.0193

The heating components H,(x;) may be written ex-
plicitly in terms of the albedo parameters a,, @, by as
follows:

Ho(xs) = (ao—by) Exs+SZGOO2 (xs)]
+as [Gooz (xs) +S52Goos (xs):H‘bo,
H, (xs) =5 (do—bo) [Gooz (xs) +'S2GO22(xs):|
+502[G022 (xs) +S2Ga02 (xs)]+52l’0,

H4(xs) =9 (Go—bo) [G004(xs) +'SZG024(x3)]
_|_9a2[GOZ4 (xs) +Ssz24 (xs)],

where the Gy (x,) are given by
Gante)= [ PP
0

Values of G, (x,) are given in Table Al.
Table A2 gives values of functions which are useful
in making hand computations of more general models.
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