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Abstract. The concept of a cold air ‘Parcel’ is introduced for describing the bulk properties of drainage flow. 
By means of a model based on the momentum and sensible heat transports under calm conditions, the 
thickness h and velocity u of the Parcel are derived in simple forms. It is shown that h and u correspond 
to the inversion height and maximum velocity of actual drainage flow. The governing parameters for h and 
u are the length and vertical drop of the slope, potential temperature difference between the ambient 
atmosphere and the Parcel, aerodynamic condition of the slope surface expressed by the mean bulk 
coefficients, and ambient stability. The mean bulk coefficients depend on the roughness lengths for the 
velocity and potential temperature profiles and are decreasing functions of the slope length. 

The Parcel Model agrees qualitatively with Manins and Sawford’s (1979) model under neutral ambient 
stratification. But agreement is not so good under stable conditions. The thickness and velocity of drainage 
ROW predicted by the Parcel Model agree with observations on slopes several tens of meters to several 
hundred kilometers long. 

1. Introduction 

At night, cold air adjacent to an inclined ground surface descends under the force of 
gravity, and drainage flows develop in mountainous regions. Many investigators have 
described this phenomenon and have carried out observations at various places, 
especially in Alpine areas (Atkinson, 198 1). Recently mountain and valley winds have 
received considerable interest in connection with the problems of transport and diffusion 
of air pollutants (Dickerson and Gudiksen, 1983). Drainage flow enhances momentum 
and sensible heat transports to the ground surface, so that energy exchange is more 
active on an inclined surface than on a horizontal one. As a result over a complex 
mountainous region, drainage flows bring cold air into basins and valleys, which 
intensities cooling of the atmosphere, sometimes resulting in the development of an 
inland local High. 

Drainage flow has been studied theoretically by two general methods. One is to make 
a model considering relevant physical processes (physical or hydraulic model), in which 
bulk properties of drainage flow are described without taking account of its internal 
structure. Papers by Defant (1933), Reiher (1936), Manins and Sawford (1979), Briggs 
(1981), and Fitzjarrald (1984) belong to this category. The other is to incorporate the 
turbulent transport process within drainage flow into the model (dynamic model), and 
to solve the governing equations analytically or numerically. The studies of Prandtl 
(1952), Rao and Snodgrass (1981), Yamada (1981,1983), Garrett (1983), and Gutman 
(1983) belong to the latter class. 

Topography and ground surface conditions are actually complex and varying from 
one place to another. It is important to simulate details of the drainage flow over real 
topography, and dynamic models are suitable for such purposes. On the other hand, 
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knowledge of the sensitivities of drainage flow to topographic features and to ground 
surface conditions is necessary for the study of energy exchange over extensive areas 
with complex ground surfaces. 

In the present study, we develop a new physical model of the drainage flow on a plain 
slope by introducing the concept of the ‘Parcel’ which describes the properties of 
drainage flow, and which is useful to parameterize the energy exchange over a complex 
terrain. In Section 2 the principle of the Parcel Model is developed. The thickness and 
velocity of the Parcel, which correspond to those of actual drainage flow, are derived 
on the basis of momentum and sensible heat transports, and they are shown to depend 
on the slope length, vertical drop from the crest, potential temperature difference 
between the ambient atmosphere and the Parcel, aerodynamic condition of the slope 
surface, and ambient stability. In Section 3, some results are compared with previous 
works and with available observations. 

2. Model of Drainage Flow on a Slope 

2.1. PRINCIPLE OF THE PARCEL MODEL 

The stationary drainage flow on a uniform and plain slope is described under quiet 
ambient wind conditions. Radiative cooling and latent heat transport are neglected. 

The concept of a cold air ‘Parcel’ is introduced. As this Parcel descends from the top 
of the slope (crest), its potential temperature decreases due to the transport of sensible 
heat to the slope surface. The thickness and velocity of the Parcel are denoted by h and 
U, respectively. The potential temperature of the Parcel 0, is defined by 

where 0 and 0, are the potential temperatures of the ambient atmosphere and the slope 
surface, respectively. This definition yields the potential temperature difference 0 as 

0, - o,v = 0 - 0, = 8, (2) 

which is assumed to be constant along the slope. 
The Parcel is shown schematically in Figure 1, in which the slope length I and vertical 

drop 6z ( = 1 sin a) are measured from the crest, and a is the slope angle. These variables 
are designated topographic parameters of the slope. 

2.2. CASES OF NEUTRAL AMBIENT STRATIFICATION 

The heat budget of the Parcel descending the slope under neutral ambient stratification 
is considered. Though the Parcel transports heat to the slope surface continuously 
during descent, it is assumed that the heat is released instantaneously to the crest surface 
and the Parcel descends the interval I retaining its thickness h. These assumptions are 
somewhat analogous to that of the mixing-length theory. The released heat per unit time 
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Fig. 1. Schematic of the Parcel on a plain slope. Solid arrows represent the forces acting on the Parcel. 

and unit area is equivalent to the mean sensible heat transported to the slope surface: 

(Ho) = T, I t=- 
(u> ’ 

(34 

where cp and p are the specific heat and the density of air, respectively. The angular 
brackets denote the mean value over the interval 1, and t is the traveling time of the 
Parcel. The mean sensible heat is expressed as 

(Ho) = c,G <u> 0, (4) 

where C, is the mean bulk coefficient for the heat transport from the Parcel to the slope 
surface. Equations (3a) and (4) yield the thickness of the Parcel as 

h = C,l . (54 

It will be shown later that h corresponds to the inversion height, hinv, of actual drainage 
flow. 

The equation of motion of the Parcel is given by 

h$=h@s~a-TO+‘h 
dt 0, P ’ 

(6) 

where 0, is the potential air temperature in a reference state. The first term on the 
right-hand side denotes the gravitational force, and z. and zh in the second term denote 
the frictional forces at the slope surface and at the interface between the Parcel and the 
ambient atmosphere, respectively ( zh corresponds to the interfacial drag due to entrain- 
ment). With the mean bulk coefficient for momentum exchange CM, z. and ~~ are 
expressed as 

7, = pc,u2 ) zh = F,pCMu2 , (7) 
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where F5 = z,,/zO. Manins and Sawford (1979) parameterized surface stress with a very 
small drag coefficient, and interfacial drag with an entrainment coefficient. They 
concluded that the interfacial drag is the dominant retarding force. Horst and Doran 
(1986), however, obtained a ratio of interfacial drag to surface stress (i.e., F5) of between 
l/ 1.2 and i from the observations and they mentioned that the relative importance of 
the two retarding forces is likely to change with the downslope growth of drainage flow. 
In this study, F5 is assumed to be unity for simplification. 

From Equations (6) and (7), the equation of motion is rewritten as 

where 

g’ = $ sin CI , 
*0 

I 

u2 = g’h 

O” (l+F,)C, ’ I 

(9) 

Here u, is the terminal velocity of the Parcel descending with constant thickness. By 
neglecting the Lagrangian time derivative in Equation (8) and with Equation (5a), an 
approximate expression for the velocity of the Parcel is obtained as 

ge . u-u, = -sma 
00 

(104 

It will be shown later that u corresponds to the maximum velocity, urnax, of actual 
drainage flow. 

The mean bulk coefficients, C, and C,, depend both on the aerodynamic roughness 
of the slope surface and on the slope length (see Section 2.5). If the slope-length 
dependence is small, Equations (5a) and (10a) indicate the following properties of the 
Parcel: the thickness h increases in proportion to slope length; the Parcel is thick over 
a rough surface slope (large C,) and thin over a smooth one (small C,); the velocity 
u increases in proportion to both the square root of the vertical drop and the square root 
of potential temperature difference; the velocity is large when C,/C, is large because 
of relatively small frictional force. These properties are confirmed by observations as 
shown in Figure 5. 

2.3. CASES OF STABLE AMBIENT STRATIFICATION 

When the ambient atmosphere is stably stratified as 

O(Z) = O(0) - y 6z ) (11) 
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the mean heat loss of the Parcel during descent is given by 

(Ho) = CpP@ + Y Wh 1 

t ’ 
t=-) 

(u> 
(3b) 

where O(0) is the ambient potential temperature at the crest, and y is the gradient of 
0. 

From Equations (3b) and (4), the thickness of the Parcel is obtained as 

h= ‘HI 
1 + 111, ’ 

where 

8 0 - 0, 
l,=-=-----. 

y sin c1 ysina 

(5c) 

(12) 

The length I, represents the influence of ambient stability on drainage flow, and is 
denoted as the ‘equilibrium length of slope’. When y # 0, Equations (5a) and (10a) hold 
for the slope of I 6 I,. In the case of I b I,, the following expressions are derived: 

h = h, = C,l, (for 1% 1,) , (5b) 

u=u,= $sina 

i 

cH 

I 

112 
(for/B/,). 

-0 (1 + F,)C, Ic 
(lob) 

If the mean bulk coefficients do not change with slope length, the equilibrium thickness 
h, and velocity U, are constant regardless of the magnitudes of slope length and of 
vertical drop, respectively. They become smaller as ambient stability increases. 

2.4. RELATION BETWEEN THE PARCEL AND DRAINAGE FLOW 

Because the present Parcel Model does not describe the internal structure of drainage 
flow, the relation between the concept of the ‘Parcel’ and actual drainage flow is 
examined with the aid of some dynamic models and observations. 

The characteristic thickness and velocity of drainage flow, K and ii, are 
defined by 

00 

h(x) =$ @(x,z)dz, 
s 
0 

03) 

i;(x) 
1 

z-i(x) = ~ 
it(x) s 

u’(x, z) dz . (14) 
0 

Here, 8’ is the deviation of potential temperature of drainage flow from ambient 
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potential temperature, and U’ is the velocity of the drainage flow itself. The origin of 
the coordinate system is located at the crest. The x-axis is taken in the downslope 
direction, and the z-axis normal to the slope. It is assumed that 0 defined by Equation 
(2) is constant along the slope. The characteristics, & and ii, are the integral 
scales of potential temperature deviation and velocity distributions, respectively, as 
shown in Figure 2. 

Z Z 

Fig. 2. Profiles of potential temperature deviation and velocity of drainage flow, and definitions of charac- 
teristic thickness & and velocity 6. Reference heights of the Parcel, h, and h,, are also shown. 

For the steady state, drainage flow is governed by the following equations: 

-+d"'=o ad 
’ ax a2 

(17) 

where z and H are downward momentum and sensible heat fluxes, respectively. After 
integrating these equations vertically and transforming them, expressions for 
6 and ii can be derived. 
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z/h u,max 

U’l Umax -WA0 

Fig. 3. Normalized profiles of velocity and potential temperature deviation. PR and RS denote 
theoretical results of Prandtl (1952) and of Rao and Snodgrass (1981), respectively. Plots are 
observations under calm conditions: 0, V, v, Martin (1975); 0, Dickerson and Gudiksen (1983); A, 

Clements and Nappo (1983); 0, n , Ohata and Higuchi (1979); 0, Imaoka (1964). 

the 
the 
A, 

For the transformations, several profile factors describing the distributions of poten- 
tial temperature deviation and velocity of drainage flow are required. These factors were 
determined from the analytical solution (Prandtl, 1952) and from the numerical solution 
(Rao and Snodgrass, 1981) for a homogeneous and infinite slope. Hereafter these 
solutions are referred to as ‘PR’ and ‘RS’, respectively. Figure 3 shows the theoretical 
profiles of normalized velocity and of normalized potential temperature deviation 
together with the observations under calm conditions. The scale of potential temperature 
deviation A0 is defined as the potential temperature difference between z = hinv and 
z = 0. Here hinv is the height where de’/dz first tends to zero in the theoretical profiles, 
and the height where air temperature begins to deviate from ambient air temperature in 
the observed profiles. The height of maximum velocity is denoted by h,, max. Though 
some scatter is seen, the observations are close to the theoretical profiles on average. 
The profile factors determined from PR and RS, and adopted in the present study are 
summarized in Table I. For simplification, we assume that these factors do not change 
along a slope. 
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TABLE I 

Profile factors determined from Prandtl(l952) and Rao and Snodgrass (198 l), and adopted in the present 
study 

Definition Prandtl Rao and 
Snodgrass 

Present 
study 

0.50 0.24 0.37 

a4 = h,/h 0.36 0.36 
a, = ho/h” 0.55 0.55 
a6 = hi,,,/& 2.4 4.7 3.6 
a7 = u,,,I~ 1.3 1.2 1.3 

With the profile factors, characteristic thickness and velocity of drainage flow are 
obtained. (See Appendix.) Characteristic thickness is expressed as 

In the limits of x 4 I, and x % I,, 

K = iCHX 

h = i;,=+CHIc (forx+l,), (194 
(for x % 1,) . (19b) 

Characteristic velocity is expressed as 
112 g= 

( 
1gBsinaCn ’ X 

30, c&j 1+5cH 
3 CM > 

( lge. c, 
> 

112 
ii= - -ma-Zc X 

30, CM 

(for x s I,) , (204 

1 
112 

(for x > I,) . 
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In the limit of x 9 l,, 

111 

( 
1ge G 

) 
112 fj=&= - -ssinu-lc 

30, c, 
(for x 9 I,) . GObI 

In Equations (18)-(20), 1, is the equilibrium length of slope (Equation (12)) and x is the 
downslope distance from the crest. 

According to PR and RS, the values of the profile factors a6 and a7 are determined 

a6 = hi,,,/& = 3.6, 

a7 = u,,,/fi = 1.3 . (22) 

Substitution of the above values into Equations (19a), (20a), and (20b) yields 

hinv = 3.6h” = 1.2&x, (23) 

1.3fi=O.78 f $sina$x 
112 

(for x 4 Z,) , (244 
q 0 A4 

?A = max 

13~ = 106 1!!!sin~%~ II2 .c * 20, CM’ 
(for x B I,) . (24b) 

In the transformation of Equation (20a) into Equation (24a), an approximation of 
$CH/CM N $ x 0.5 is used. 

Under the assumption that the mean bulk coefficients based on the velocity of the 
Parcel (Section 2.2) and those based on the characteristic velocity of drainage flow are 
the same, comparisons of the thickness and velocity of the Parcel (h and u, Equations 
(5a) and (10)) with those of drainage flow (hi,, and u,,, , Equations (23) and (24)) yield 
the following relations: 

hinv = 1.2h, (25) 

r 

0.78~ (for x -% I,), (264 2.4 max = 
1.06~~ (for x + I,) . (26b) 

Roughly speaking, the above three equations show that the thickness of the Parcel h 
corresponds to hi,,, the velocity of the Parcel u corresponds to u,,,, and u N ii. These 
approximations will be used in Section 3.2, where the Parcel Model will be compared 
with observations. 

The flow rate and longitudinal heat flux (negative heat flux relative to the ambient 
atmosphere) associated with drainage flow are expressed with the profile factors a, and 
a, as 00 

flow rate: q* = u’dz = a,hii = 3hii, (27) 

longitudinal heat flux: IF = cpp 
s 

8’~’ dz = a,a,c,phtXi 

0 = l.lc,pi;&. (28) 
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2.5. MEAN BULK COEFFICIENTS, C, AND CM 

The definitions of the mean bulk coefficients of the Parcel, C, and C,, are somewhat 
different from those of C, and C, ordinarily used in the horizontal surface layer. For 
so-called ‘log’ profiles, C, and C, are written as 

c, = 
k2 

3 cm = 
k2 

ln 2 ln 5 
2’ 

zo z0 

(29) 

where k (= 0.4) is the von K&man constant, z, the reference height, and z. and z, the 
roughness lengths for the velocity and potential temperature profiles, respectively. 

In the first place, the ‘local’ bulk coefficients, C& and CL, are determined. The local 
fluxes of sensible heat Ho and momentum z. at a certain location on the slope, where 
the thickness and velocity of the Parcel are h and u (characteristic thickness and velocity 
of drainage flow are h” and tz), respectively, are expressed as 

HO - = u*e, = cLue, 
CPP 

(30) 

TO -=u ‘, = C&u’. 

P 
(31) 

The heights h, and h,, where the velocity and potential temperature deviation are equal 
to u and 0, respectively, are adopted as the reference heights of the Parcel (see Figures 2 
and 3). With the profile factors, a4 = h,/il = 0.36, a5 = ho/h = 0.55, and 
a6 = h,,/h = 3.6, the result is obtained that 

h h u2:u=-= a4 0.10, 
h h ‘,L= as = 0.15. 

h kv a6 h hinv a6 
(32) 

Assuming so-called ‘log + linear’ profiles below the levels of h, and h, in the drainage 
flow, one may express the local bulk coefficients as 

The terms including B (1: 7) represent the effect of stability. With Equations (30) and 
(31), the Monin-Obukhov length L is written as 

C* 342 
L=M . 

k$CgB 
(34) 

q o 

With the relations Cc = :C, and CL = $C, (shown later), Equations (5a), (lOa), (32), 
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and (34) yield 

and 

(36) 

These stability-dependent terms may be neglected for ordinary slopes except for the case 
where CM is very large or a is very small. Thus the local bulk coefficients can be 
expressed as 

cg= 
k2 

O.lOh In 0.15h ’ 
CL= 

k2 

2 * 
In- ~ 

zo ze 

(37) 

Next, the mean bulk coefficient for heat exchange C, for a slope of length I is 
determined. Substitution of Equation (30) into Equation (4) yields 

c 
H 

(r) = (~oN(CpP)=~ I 

ecu> 1 s 

CL(x) z dx , 
U 

0 

(38) 

which indicates that C, is a mean of Cg weighted by u/(u) . Though the dependence 
of u on x varies with ambient stability, the following approximate equation was found 
regardless of y : 

where Cgo is the local bulk coefficient given by Equation (37) under neutral ambient 
stratification. The mean bulk coefficient for momentum exchange CM is expressed as 

(~o>lP = CM (u>’ . (40) 

Substitution of Equation (31) into Equation (40) yields I CM(,) = ( “)” ’ -=- s C* (x) u2(x) dx (24)’ I o M (u)’ . (41) 

This indicates that CM is a mean of CL weighted by u’/(u) 2. An approximation similar 
to Equation (39), however, is also adopted for CM. Equations (5a), (37), and (39) yield 

c,(1) = 
;k2 

ln O.lOCH(I)Iln 0.15CH(I)Z ’ 

zo Ze 

cdz) = Qn0.1tj*(ZV)2. (42) 
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Equation (42) shows that the mean bulk coefficients are functions of slope length as well 
as roughness lengths. The relations between the local and mean bulk coefficients are 
given by 

(43) 

Figure 4 represents the mean bulk coefficients, C, and CM, versus slope length 1 
(lower figure) and the ratio C,/C, versus I (upper). In the figure, the ‘rough’ surface 
refers to a surface covered with trees or grass (z, = 31.6 cm and zg = 1 cm), and the 
‘smooth’ surface to a flat snow surface (zO = zg = 0.01 cm). The mean bulk coefficients 
decrease with 1 because the reference heights of the Parcel, which are proportional to 
its thickness, increase with 1. 

1 T 
smooth 

3 . 
u’ 

- CH [ --- CM 

A rough 

I (km) 

Fig. 4. Relations between mean bulk coefficients, C, and CM, and slope length 1 (lower figure), and those 
between C,/C, and I (upper). The ‘rough’ and ‘smooth’ surfaces are covered with trees or grass and smooth 

snow, respectively. 
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3. Discussion 

3.1. COMPARISON WITH PREVIOUS THEORETICAL WORKS 

Earlier theoretical works of Defant (1933) and Reiher (1936) did not consider the 
thermodynamics of drainage flow. Reiher derived an expression for velocity in which 
drainage flow was regarded as the sinking of cold air due to gravity. Defant adopted 
the idea that the gravitational force is balanced by the frictional force. If the thickness 
in Defant’s expression for the velocity is given by Equation (5a), his result coincides with 
our Equation (lOa) for neutral ambient stratification. 

Manins and Sawford (1979) (MS) proposed a hydraulic model, in which they included 
a pressure gradient force and an interfacial drag and assumed that the sum of sensible 
and radiative heat loss is constant along the slope. In our Parcel Model (PM), however, 
the pressure gradient force and radiative heat loss are neglected; inter-facial drag is 
parameterized with F5 ; and sensible heat is expressed through the use of C,. 

Though the definitions and assumptions are different between PM and MS, we can 
examine qualitative dependencies of the following two quantities on the downslope 
distance x: 

heat deficit cc 
h (PM), 

b&m (MS). 
0 

3.1.1. Neutral Ambient Strat$cation 

Under the assumption of constant C, and C,, PM and MS show somewhat different 
dependencies as follows: 

flow rate cc 
x312 (PM), 

x4’3 (MS), 
(45) 

heat deficit a ’ (PM), 
x213 (MS). 

3.1.2. Stable Ambient Strat$cation 

According to MS, the flow rate and heat deficit increase with x but the latter has a 
maximum under certain conditions. PM shows, however, that both increase monotoni- 
cally and attain equilibrium values. Under the equivalent assumptions to MS on diabatic 
cooling, PM’s dependence of the heat deficit on x agrees with MS’s, but that of the flow 
rate on x does not (Sat0 and Kondo, 1985a). 
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3.2. COMPARISON WITH OBSERVATIONS 

3.2.1. Mean Bulk CoeJicients 

In order to determine C, and C, observationahy, it is necessary to know the sensible 
heat and momentum fluxes as well as the temperature and velocity distributions of 
drainage flow. Many investigators have been interested in the overall structure of 
drainage flow, but only a few flux measurements have been made. Here we use available 
data of the katabatic wind at Mizuho Station, Antarctica, and the data taken on the 
simple slope several hundred meters long. 

Firstly, four cases under typical katabatic wind conditions (strong surface inversion 
is present, maximum velocity exists, and ambient velocity at a height of 1 km is less than 
10 m s - ‘) are analyzed. The characteristics of drainage flow, u,,, and 8, were deter- 
mined from the low-level radiosonde data by Kawaguchi et al. (1985), and the sensible 
heat and momentum fluxes were calculated from the temperature and velocity profiles 
measured with 30 m tower by Ohata et al. (1983). With Equations (30), (3 l), and (43), 
C, = 0.7 x 10 - 3 and C, = 2 x 10 - 3 are obtained, which do not differ greatly from the 
theoretical values for the ‘smooth’ surface with I = 300 km (Figure 4). 

Secondly, observational results on Rattlesnake Mountain (Horst and Doran, 1986) 
are examined. They obtained C, = 0.034-0.041, where q,/p = CdU2 and U is defined 
in the same way as Manins and Sawford (1979). Considering that their surface stress 
is a local value and that U/u N 0.7 (according to PR and RS), CL = 0.017-0.021 and, 
hence, C, = 0.026-0.032 are obtained. This value of C, almost agrees with the 
theoretical value for their slope conditions (I = 400-1000 m and z0 = 3 cm). 

3.2.2. Thickness and Velocity of Drainage Flow 

Comparisons are made between the present Parcel Model and the observations under 
weak ambient winds. Table II summarizes the observed values from the literature where 
most of the governing parameters are reported. The governing parameters are the slope 
length 1, vertical drop 6z (both are measured from the crest), potential temperature 
difference between the ambient atmosphere and drainage flow 0, ambient potential 
temperature gradient y, and slope surface condition. In the table, hinv is the observed 
inversion height, u,,, the maximum velocity, and h,, max the height of maximum velocity. 

In Figure 5(a), observed values of the thickness of drainage flow versus slope length 
are plotted. The smaller ofthe I and 1, values was used; however, when y was not known, 
the topographic value I was used provisionally. Since hinv was not observed for No. 1, 
2W,, max was used instead. The factor 2.8 is the mean value of the ratio h&h,, max 
calculated from the listed data in Table II. The solid lines are the theoretical values of 
h for the ‘rough’ and ‘smooth’ surfaces, whose definitions were given in Section 2.5. The 
broken lines are the theoretical values (Equation (5a)) for C, = 0.001 and C, = 0.01. 
Note that the value of C, decreases with slope length. 

The observed values of Nos. 6,7, and 12 are slightly smaller than the theoretical ones 
for the ‘rough’ surface. This may be attributed to their surface conditions: their slopes 
are covered with grass or small shrubs; consequently the value of C, is smaller than 



TA
BL

E 
II 

C
ha

ra
ct

er
is

tic
s 

of
 d

ra
in

ag
e 

flo
w

s 
ob

se
rv

ed
 

on
 s

im
pl

e 
sl

op
es

 a
nd

 g
ov

er
ni

ng
 

pa
ra

m
et

er
s.

 
Th

e 
pa

re
nt

he
se

s 
in

di
ca

te
 

es
tim

at
ed

 
m

ax
im

um
 

ve
lo

ci
ty

, 
a 

bl
an

k 
in

di
ca

te
s 

th
at

 t
he

 v
al

ue
 w

as
 n

ot
 o

bs
er

ve
d.

 
D

at
a 

ar
e 

fro
m

 
th

e 
fo

llo
w

in
g 

lit
er

at
ur

e:
 

(1
) 

O
ha

ta
 

an
d 

H
ig

uc
hi

 
(1

97
9)

, 
(2

) 
M

ar
tin

 
(1

97
5)

, 
(3

) 
O

ha
ta

 
et

 a
l. 

(1
98

4)
, 

(4
) 

Ad
ac

hi
 

an
d 

Ka
w

ag
uc

hi
 

(1
98

4)
 

(5
) 

Ad
ac

hi
 

(1
98

3)
, 

(6
,1

3)
 

Sa
to

 
an

d 
Ko

nd
o 

(1
98

5b
), 

(7
) 

C
le

m
en

ts
 

an
d 

N
ap

po
 

(1
98

3)
, 

(8
) 

Im
ao

ka
 

(1
96

4)
, 

(9
) 

D
ic

ke
rs

on
 

an
d 

G
ud

ik
se

n 
(1

98
3)

, 
(1

0)
 

Ta
na

ka
 

et
al

. 
(1

98
2,

 
19

83
), 

(1
1)

 
Ko

nd
o 

an
d 

Ku
w

ag
at

a 
(1

98
4)

, 
(1

2)
 

Ku
do

 
et

al
. 

(1
98

2)
, 

(1
4)

 
Ba

nt
a 

an
d 

C
ot

to
n 

(1
98

1)
, 

(1
5)

 
D

oh
ko

sh
i 

et
 a

l. 
(1

98
5)

. 

N
o.

 
O

bs
er

va
tio

n 
si

te
 

I (k
m

) 
(“C

 
km

-r)
 

%
la

x 
(m

 s
-r)

 
N

ot
es

 

(S
no

w
 

or
 g

la
ci

er
) 

1 
M

t. 
Ts

ur
ug

i 

2 
G

la
ci

er
 

de
 S

t-S
or

lin
 

3 
G

la
ci

er
 

Sa
n 

R
af

ae
l 

4 
M

iz
uh

o 
St

at
io

n 
5 

Sy
ow

a 
St

at
io

n 

0.
78

 
0.

30
 

0.
25

 
0.

04
 

2.
5 

0.
31

 
40

 
2.

8 
30

0 
0.

77
 

55
0 

3.
0 

(T
re

es
 

or
 g

ra
ss

) 
6 

M
t. 

A
zu

m
a 

ko
-F

uj
i 

0.
03

7 
- 

0.
08

9 
0.

02
0 

- 
0.

04
3 

0.
5-

2.
7 

6-
10

5 
1.

6-
3.

5 
0.

06
8-

0.
09

5 
0.

03
4-

0.
04

8 
0.

3-
2.

5 
13

-4
6 

7 
Pa

ja
rit

o 
M

ou
nt

ai
n 

8 
H

ak
at

aj
im

a 
9 

C
ob

b 
M

ou
nt

ai
n 

10
 

To
m

ak
om

ai
 

11
 

Se
nd

ai
 

34
 

1.
1 

3.
5 

4 
28

0 
(4

) 
12

 
Su

ga
da

ira
 

1.
0-

1.
5 

0.
28

-0
.3

3 
3.

1-
3.

4 
24

 
5-

8 
13

 
Ka

w
at

ab
i 

1.
8 

0.
33

 
1.

6-
2.

5 
l-1

6 
18

-2
8 

14
 

So
ut

h 
Pa

rk
 

18
 

1.
4 

3.
7 

19
 

38
 

25
 

3 
15

 
H

ay
ak

ita
 

5.
2 

0.
11

 
3.

5 
3 

60
 

0.
09

2 
0.

04
6 

2.
9-

4.
1 

20
-6

9 
(0

.7
-1

.0
) 

0.
30

 
0.

06
 

2.
5 

5 
0.

82
 

0.
25

 
3.

0 
15

 
(2

.5
) 

0.
69

 
0.

15
 

2.
0 

15
 

5 
2.

4 
2.

4 
0.

45
 

5.
0 

40
 

15
 

1.
2 

17
 

0.
33

 
10

.0
 

2 
88

 
(3

) 

4.
0-

6.
4 

2.
0-

6.
6 

3.
5 

7.
2 

3.
8 

1.
1 

0.
7 

4 
2 

10
0 

50
 

5 
32

5 
50

 
1 

40
0 

20
0 

1.
4-

2.
2 

1.
4-

4.
4 

5 14
 

15
.4

 

Sm
al

l 
sn

ow
 

pa
tc

h,
 

Pe
rio

d 
1 

Sm
al

l 
sn

ow
 

pa
tc

h,
 

Pe
rio

d 
2 

G
la

ci
er

, 
3-

da
y 

m
ea

n 
G

la
ci

er
 

An
ta

rc
tic

a,
 

m
ea

n 
of

 2
6 

ob
s.

 
An

ta
rc

tic
a,

 
m

ea
n 

of
 

14
 o

bs
. 

(0
.3

-1
.0

) 
G

ra
ss

 
G

ra
ss

 

G
ra

ve
l 

G
ra

ss
, 

up
pe

r 
m

as
t 

G
ra

ss
, 

lo
w

er
 

m
us

t 
Tr

ee
s 

an
d 

gr
as

s 
Tr

ee
s 

an
d 

gr
as

s,
 U

ni
t-1

9 
Sp

ar
se

 t
re

es
 

an
d 

sn
ow

, 
m

ea
n 

of
 7

 o
bs

. 
Tr

ee
s,

 
m

ea
n 

of
 

10
 o

bs
. 

G
ra

ss
 

Tr
ee

s 
an

d 
gr

as
s 

Tr
ee

s 



JUNSEI KONDO AND TAKESHI SAT0 

rough 

1 10 100 
1 (km) 

Fig. 5. Relation between the thickness of drainage flow and slope length (a) and that between the velocity 
and 0 62 (b). Solid and broken lines represent the predictions by the Parcel Model. Observations are plotted 
with the numerals indicating observation sites (Table II). Symbols indicate types of slope surfaces (circle: 

snow or glacier surface, square: trees or grass-covered surface). 



A SIMPLE MODEL OF DRAINAGE FLOW ON A SLOPE 119 

that for the ‘rough’ surface. Figure 5(a) shows agreement between the Parcel Model and 
observations over a wide range of slope lengths. The dependence of the thickness of 
drainage flow on the aerodynamic roughness is also consistent with the Parcel Model. 

Figure 5(b) shows the velocity of drainage flow versus 0 62, in which numerals indicate 
observation sites and the smaller value between 6z and 1, sin a is used when y is 
known. The solid lines are the theoretical values of u (Equation (lOa)) for C,/C, = 0.1 
and C,/C, = 1. Instead of 6, the temperature difference between z = 2.4 m and 
z = 0.4 m for No. 1, and that between z = 9.5 m and z = 0.5 m for No. 2 are used. 

The observed velocities of Nos. 4 and 5 may be larger than those expected under calm 
conditions because of the ambient winds which may accelerate the drainage flows. The 
Coriolis force cannot be neglected for large-scale drainage flow such as the katabatic 
wind (Nos. 4 and 5). Incorporating the Coriolis force, Kondo (1984) obtained the 
velocities 0.75 (No. 4) and 0.96 (No. 5) of those when the Coriolis force was neglected. 

4. Conclusions 

A simple model of drainage flow on a slope (Parcel Model) has been proposed. The 
model is based on the momentum and sensible heat transports to the slope surface under 
calm conditions. The main conclusions are as follows: 

(1) With the concept of a cold air ‘Parcel’ together with its heat budget and equation 
of motion, the thickness h and velocity u of the Parcel have been derived in simple forms. 
The governing parameters for h and u are the length and vertical drop of the slope, 
potential temperature difference between the ambient atmosphere and the Parcel, and 
the aerodynamic condition of the slope surface expressed by the mean bulk coefficients. 
The influence of ambient stratitication on drainage flow is represented by the ‘equi- 
librium length of slope’. 

(2) With several profile factors, h and u of the Parcel were shown to correspond to 
the inversion height hinv and maximum velocity u,, of an actual drainage flow, 
respectively. The flow rate and longitudinal heat flux associated with drainage flow were 
formulated. 

(3) The mean bulk coefficients of the Parcel were determined under some assump- 
tions on the form of the temperature and velocity profiles of drainage flow. They are 
expressed in terms of roughness lengths (zO and zO) and a slope length. 

(4) The Parcel Model agrees qualitatively with the hydraulic model of Manins and 
Sawford (1979) when ambient stratification is neutral Under stable conditions, agree- 
ment is not so good. 

(5) The thickness and velocity of drainage flow predicted by the Parcel Model agree 
with observations on slopes several tens of meters to several hundred kilometers long. 

Since the Parcel Model is rather simple, it may be useful for the study of energy 
exchange over complex terrain, and for the prediction of the development of cold-air 
pools or an inland local high pressure area. 
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Appendix. Derivations of Characteristic Thickness and Velocity of Drainage Flow 

Characteristic thickness and velocity of drainage flow are derived as follows: 

A.1. THICKNESS, R 

Equations (16) and (17) yield 

ao,d + aelwf a H 

- 0 
-- ~ 

3X a2 az 5~ 
- yu’ sin ix. 

After integration over z from zero to infinity, Equation (Al) results in 

$~O.u.dz=~- jsinaj.‘dz, 
P 0 

641) 

642) 

where w’ = 0 and H = Ho at z = 0, and w’ = H = 0 at z = co, in which Ho denotes the 
sensible heat flux at the surface. With the profile factors a, and a2, Equation (A2) is 
rewritten as 

$(l.lh&i)=~- ysincrx 3Rii. (A3) 
W 

Integrating Equation (A3) over x’ from zero to x with i; = 0 at x’ = 0, we obtain 
x 

x <Ho) l.lK(x)&Q) = ~ - 3ysin c1 i;iidx’, 
s 

t-44) 
W 0 

(Ho) = C,P% @> 8. (A3 

The angular brackets denote the mean value over the interval O-x. The expression of 
(Ho) is formally the same as Equation (4). For simplification, the following approxi- 
mations are used: 

s iliidx’? xi;(x) (ii) , 

0 

l.lG(x)- 3 (ii> . 

WI 

647) 
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Then, Equation (A4) is rewritten as 

3 (a) ii(x)(d+ yxsina)- = c,e (ii) ) 
X 

and we obtain 

‘c x 
fi= 3 H 

l+* 

648) 

(18) 

A.2. VELOCITY, ii 

Equations (15) and (17) yield 

(A9) 
a z + gg sin cI adz I add 

--C-J * ax az az p 0, 

After integration over z from zero to infinity, Equation (A9) results in 

a* - 
ax s 

~‘2 & = _ ?? + ji !!! sin u 
P 00 ’ 

0 

(AlO) 

where z = r, at z = 0 and z = 0 at z = co, in which r,, denotes the momentum flux at 
the surface. With the profile factors a, and (I~, Equation (AlO) is rewritten as 

(All) 

where 

To/p = c&-P . 

Substitution of Equation (A12) into Equation (Al 1) yields 

6412) 

(A13) 

Considering that aii’/ax = 2ii &/ax = 2 dii/dt, Equation (A13) corresponds to the 
equation of motion of the Parcel (Equation (6)). The factor $ is caused by the shapes 
of the potential temperature deviation and the velocity distributions. Instead of the 
frictional force at the interface between the Parcel and the ambient atmosphere, the drag 
due to the change in characteristic thickness appears in Equation (A13). This term has 
the same effect as the drag due to entrainment. 

Using Equation (19) with the assumption of constant C, and CM, we can obtain the 
analytical solutions of Equation (A13): 

fj= LgBsin~CH l 
( 

112 
X 

30, CM 
1+;g > 

(for x s L) , (204 

M 
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X 

II-7 

(forx>Z,), WC) 

where ii = 0 at x = 0 for x s I,, and ii at x = 1, is given by Equation (20a) for x > 1,. 

The exponential part on the right-hand side of Equation (20~) represents the transitional 
form of the velocity for x > 1, before reaching its equilibrium value. Since the solutions 
of Equation (A13) under the assumption of aii’/ax = 0 do not differ much from 
Equations (20a) and (20~) the approximation in Section 2.2 is adequate. 
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