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SUMMARY

Experimental evidence on the flow law of ice is reviewed, and the justification
for various assumptions commonly made in theoretical studies of ice movement is
discussed. This enables the reliability of results obtained using the assumptions to
be assessed.

The general theory developed allows certain predictions to be made concerning
the effects of complicated stressing systems, and in particular the theory is applied
qualitatively to explain the anomalous behaviour of glaciers below ice falls and in
other places where large stresses are acting in the ice due to its flow.

Introduction

Theoretical discussions of the physics of ice movement must start from some
assumptions concerning the behaviour of ice when it is subjected to a stress. In this
paper we shall consider the experimental evidence on which such assumptions can
be based, and so bring out the possible reasons for which the theory could fail. In
this way it is possible, to assess the strength and weakness of the present state of the
theory of ice movement, and to see in what directions future investigations should
proceed. It is also possible to see certain predictions of a theoretical nature which
may assist in the explanation of some current glacier problems.

Experimental evidence on the flow law of ice

Experimental evidence on the flow law of ice can be gained in two main ways,
from laboratory tests, and from the success of theoretical predictions of the behaviour
of natural ice masses. In many ways the simplest method consists of laboratory work,
for the conditions of the experiment are usually much better defined than in field
work, and, although the success of theoretical work on glacier flow is a heartening
confirmation of the assumptions made, laboratory tests provide the best foundation
for our knowledge of the behaviour of ice.

A large number of tests have been performed on the mechnanical behaviour
of ice under various kinds of stress. Many of the more modern ones have recently
been reviewed (), and I shall simply summarize the position here. Single crystals
of ice can deform by slip on their basal planes, and no definite stress has been found
below which no deformation occurs. Under a given stress the rate of deformation
appears to increase with time, irrespective of whether the stress is applied as a com-
pression, tension or shear (%) (}) (*). There is some doubt concerning the mathematical
form of the creep curve, and there is as yet little evidence on the variation of flow
with stress, although it would seem to be something rather like a power law the expo-
nent of which lies between 2 and 4. The variation with temperature is quite marked,
and one relation which has been dedeuced (%) is that as the temperature is reduced
from 0°C, the stress required to produce a given creep curve is increased by a factor
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proportional to the square of the temperature in degrees Centigrade. It has also been
shown (%) that prolonged resting, or changing the glide direction, does not restore
its original hardness to an ice crystal, but that, once it has been deformed and the
creep has accelerated, this accelerated rate is resumed if the stress is reimposed.
A hydrostatic pressure does not affect the creep behaviour of an ice crystal, provided
the difference between the test temperature and the melting point is kept constant (5).
However it has been reported (°) that a compressive stress perpendicular to the slip
plane increases the glide rate considerably.

Tests on randomly oriented polycrystalline ice (") () have shown that, under
a constant load, the rate of flow decreases with time at first, though it may later settle
down to a steady rate or even reaccelerate. This rather surprising difference from the
behaviour of single crystals must be due to interaction between the various grains,
while the subsequent reacceleration can be attributed to the recrystallisation of the
ice with a preferred orientation favorable to slip under the action of the applied
stresses, for this does appear to be the preferred orientation observed. The minimum
flow rate observed can be related to the applied stress, and it is found that a power
law of the form

e = (c/A)" (€))

results, where e is the strain rate, ¢ is the applied stress, and A and 7 are constants.
The value found for # in tests at higher stresses was about 4, but at lower stresses
the value of n appeared to drop; however this may be due solely to the fact that
the tests at low stresses were not continued long enough for the true minimum rate
to be observed, and when this is taken into account, no important deviations from
this law were observed. This law also results from certain analyses of the flow of
glacier ice, but since the stresses are not simple in these cases, the considerations
discussed later in this paper have to be borne in mind in assessing the results. The
variation of flow with temperature has also been investigated, but not over a suff-
iciently large range of temperatures to enable the law governing it to be deduced.
The magnitude of the variation can be quite large: about a factor 6 in flow rate
between the melting point and — 13°C.

Most of the tests on polycrystalline ice in which the stress has been uniform
throughout the specimen have been performed in tension or compression (though
recently a series of shear tests has been reported (?)), but it is most important to see
what the effect of more complex stress systems is, and it is worth emphasizing that
there is no general theory by which the behaviour under complex stress systems
can be deduced completely from the results of tests in simple tension or compression
without making drastic assumptions the nature of which will be discussed below.

Steinemann (°) has investigated the effect on shear tests of a large hydrostatic
pressure, and has found that there is no marked effect, and has also studied the effect
of superimposing uniaxial compression and shear. Inthis latter experiment the specimen
was ring shaped, and was twisted to give the shear, the compression being applied
axially. This experiment is virtually the only one that has been reported in which
different stressing systems have been applied to essentially similar specimens, and
the results are thus of great importance for the testing of any theory of ice flow;
they will be discussed again below.

The experimental information is, as we see, still rather sparse, but we can con-
sider what the theoretical possibilities are, and can then investigate what such evidence
as we have can tell us concerning the various possibilities. Finally we can see what
consequences in terms of the behaviour of ice in nature would result if certain
theories were to prove to be applicable.
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Theoretical possibilities for the flow law of ice

In order to limit this discussion, I will assume that the ice we are considering
consisted ' originally of randomly oriented polycrystals, and was thus isotropic. This
assumption is seldom true for natural ice masses, but is probably a good approxi-
mation in the case of glacier ice, though it would be a rather poor one for some
other forms such as river ice. I will also assume that the rate of flow depends only
on the stress, and not upon the time for which it has been acting. We may hope that
this will be true for those cases of flow where a particular piece of ice remains under
the same stress sufficiently long for a steady state to be reached. It may be that
recrystallisation will already have produced ice far from isotropic before this steady
state is reached, but, as is shown in the Appendix, provided the stress does not change
direction, this anisotropy does not invalidate the theory. These initial assumptions
naturally impose limitations on the theory, and if any particular results do not
agree with theoretical predictions, it may always be because these initial assumptions
are untrue.

Even in an initially isotropic material in which the flow is a function of the
stress alone, the flow law can be quite complex. It can be shown on general grounds
(see Appendix) that the relation between two second rank tensors such as the strain
rate e and the stress ¢ must be of the form

€jj = A(El, 22a23’) Sz‘j + 3(21’22’23) Gij + C(ZlaZZy Za) G ik Okj, )

where the suffices i and j can take any of the values 1, 2 or 3 and so give the various
components of the two tensors, 8,-,- is equal to 1 if i = j, but zero if i # j, and A4,
B and C are three general functions of the three invariants of the stress tensor

2, Xy and X;. Here, and throughout this paper, we use the summation convention
for repeated suffices.

The three invariants of the stress tensor can be written

2z, = 61+ 6: + 03, Zz = —(0102 + 6203 + 030,
2y = G162 03,

where 61,6, and g, are the three principal stresses. 11s just three times the hydros-
tatic pressure. However one of the few things that the experiments do tell us is that
in those cases where it has been tested, the hydrostatic pressure does not affects
the flow law, and thus X, must not enter our equations. A very convenient way of
ensuring that this is so is to define the stress deviator by the equation

1

721’

o'y = i — 3

the three invariants of this tensor are
le = 6/1 + G,z +0'y = o'ii = 0,
1
X,=— (616 +6'56"5 + 04 ') = 7GIU 6’i,
7 ’ 7 ’ 1 7’ ’ ’
2 =06"16"5,0", =300k 0"k
and the first invariant is necessarily zero. We can therefore rewrite equation (2) in
terms of the stress deviator; it becomes
ej=4A (2'25 2/3) 8!] + B(E/zy Z/a) cf/t'j + C(Z/z ,2,3) o’ ik c)'/kj~ 3)
We can further reduce the possibilities for the flow law by using the fact that
the density of ice remains constant during flow; this will be true if the properties of

the ice are not changing, and this is the only case for which any general theory can
hold. The change in density is related directly to the first invariant of the strain rate
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tensor E; = e;;. Tjus if the density does not change, E; = 0, and if we use equation
(3) to determine e;;, and equate the result to zero we get

3AE ) + B, 2 )Y + CE 222, =0, '

or, since X', = 0,
2
A(Z,za 2/3) = 3‘ 2’2 C(ley le)-

This is a relation between 4 and C which we can use to eliminate 4 from equation (3)
and so obtain

2
ej = — 3 Y Oy, 2 5) 81/ + B(X,y, 25 o’ij + C 5, X5 0'ik 6'kiy, @)

which is the most general form that the relation between stress and strain rate can
have under our assumptions. It contains two arbitrary functions of two variables,
and these cannot be determined from any series of tests using only one kind of
loading, such as for example compression tests. This demonstrates the fact that
such a series of tests does not give sufficient information completely to determine
the flow law of ice without further assumptions.

In order to do some calculations based on laboratory tests in compression,
Nye (%) made the further assumption that under a given stress the components of
strain rate are proportional to the components of the stress deviator and that the
second invariant of the strain rate tensor is a function of 2’, only, and if this is so,
it can be shown (see Appendix) that equation (4) reduces further to

ej = B3 o). ®)

This relation can be tested using the results from any experiments in which,
for comparable specimens, 2., and X5 were varied separately. Such tests on poly-
crystals have been made by Steinemann (°). It is possible to compare his tests in
uniaxial compression and tension with his tests in shear by plotting values of E,,
the second invariant of the strain rate tensor, against values of 2’,; if this is done
all the points should lie on a single curve. This procedure is equivalent to that adopted
by Nye (1°) in comparing laboratory compression tests with the glacier results, for
Nye’s T is equal to the square root of 2., and Nye’s € is equal to the square root
of E,. Steinemann has made this comparison and finds that the two types of test
do not give the same curve, that for shear giving a slower strain rate at a given stress
than is predicted by the theory from the uniaxial results. Steinemann has suggested
that this may due to a different anisotropy of the ice developing in the two specimens,
but this anistropy, being entirely determined by the stress, can only affect B and C
in equation (4). It is quite possible to account for Steinemann’s result provided the
function C in equation (4) is not zero, or B is function of 2.

Steinemann (°) has also made tests under simultaneous shear and compression,
as described above, and these tests also allow us to test equation (5). Here the test
may be even better than in the comparison between uniaxial and shear tests, as speci-
mens of the same shape were used throughout. The method of making this comparison
is discussed in the next section.

Interpretation of Steinemann’s tests under simultaneous shear and compression

In these experiments the direction of compression lay in the plane of shear and
parallel to one of its directions (see Fig. 1). If we represent the magnitude of the
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Fig. | — Diagram to show the combination of stresses used by Steinemann in his
tests under combined shear und compression.

shear stress by 7 and that of the uniaxial compression by P, then the stress tensor
can be written in matrix form as

0 7 9
T P O
00 O
and the stress deviator is
—P/3 7 0
T 2P/3 0
0 0 —P/3

The second invariant of the stress deviator

Z,z = _:1;‘ P? + 12,
and, if equation (5) holds, E, will be a function of >/, only, and the individual com-
ponents of strain rate will, according to the assumption from which (5) was derived,
be proportional to the individual components of the stress deviator. Steinemann
only reports measurements of the shear strain, but the specimen must also have
been compressing under the action of the compressive stress. It the resulting shear
strain rate is y (using the usual definition of shear strain, so that the tensor component

1, . .
e, = 5 ), and the uniaxial compression strain rate is £, then the strain rate tensor
expressed in matrix form will be

—&/2 ¥/2 0

Yi2 € 0 ,
0 0 —gn2
and its second invariant
3
a2 a2
) € + e
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and so it follows form equation (5) that

3 1 1
TR . a2 £ P2 2
R s Gl A Gl e )

Thus for example when P = 0, and, consequently, g€ =0,
1 2 2
il [z

Since Steinemann did not measure €, we cannot check this prediction directly, but
we can compute what € should have been and then use this value to analyse the results.
If the components of strain rate and stress deviator are proportional, then

21/% = 2 PJ(3¢),

—13 -
logE,

sec”?

_15 -

-16} -

VA

I '
o log Z, kg®em™

[ S 3 =

Fig. 2 — A graph of log E, against log £, using the data from Steinemann’s tests
under combined shear and compression. If the assumptions suggested by
Nye were true, all the points should lie on one curve. The symbols used for
points have the following meaning:

O points derived from tests in simple shear

X points derived from tests under a shear stress of 4.20 Kg./cm?. with
superimposed compressive stresses from 0.to 18 Kg./cm?.

-+ points derived from tests under a shear stress of 6.59 Kg./cm? with
superimposed compressive stresses from 0 to 18 Kg./cm?
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or
€ = Py/3T.

1 ., 1
Thus if we plot 7 Yi(l + P?/37%) against 3 P2 -+ 72 we should get the same curve

whether or not the compression is acting. In fact since a power law is a good approxi-
mation to this relation, it is best to plot the logarithm of these two quantities, and
this is what has been done in Fig. 2 using data obtained from a graph of Steinemann’s
results.

It will be seen from Fig. 2 that, although there is some scatter among the points,
as is to be expected in any mechanical tests of this sort, there is a definite difference
between points corresponding to a given value of T, such that the effect of a com-
pressive stress P on the shear rate is not as great as the effect of a shear stress giving
the same value of ’,. This is not necessarily in contradiction with the result found
in comparing shear and compression tests, where the effect of compression was to
give a faster starin rate that that for a comparable shear, becuse in that case it was
the compression strain that was measured under the compressive stress. It is quite
possible that the value of & in these tests was correspondingly large.

Applications to the theory of glacier flow

It is useful to see what implications the theory that we haye been discussing
has concerning the behaviour of glaciers. Nye (1°) has drawn many fruitful deductions
from the law expressed by equation (5), and there is no need to repeat that work;
here we shall simply consider briefly what consequences would follow if, as seems
now rather probable, we have to admit that equation (5) is not accurate, and we
adopt instead equation (4). Finally we can consider a few implications of equation
(5) that have not previously been discussed, and which may still have some validity
in terms of the more general law.

One of the main differences between equations (4) and (5) is the presence in
equation (4) of the terms containing the function C which show that in general e;;
will not be zero even if the corresponding stress deviator component ¢’; is zero.
For example, a specimen of ice would swell or contract perpendicular to the plane
of shear, a behaviour well-known to occur in other non-Newtonian materials. This
can be shown as follows. If a simple shear stress, for which the only non-zero term
of the stress deviator is 6’4,, is applied, then X/, will be non-zero but X’; will be
zero. The swelling perpendicular to the plane of shear will be given by

2
€33 = — ?Z/z C(ley E’z),

and so unless C(X’;, 2.’5) happens to be zero whenever X’ is zero, es; will be finite,
and the material will grow (or contract) perpendicular to the plane of shear. If it
is not free to change dimensions in this way, as would be the case if the ice were part
of a valley glacier, then a stress deviator 6’33 would have to develop to prevent the
change. Experiments which test whether such an expansion occurs, or which measure
a cross-stress developed if the expansion is prevented, are therefore a way of inves-
tigating the form of the function C.

Such experiments .do not seem to have been done for ice, and until they are
there remain many possibilities open concerning the form of the function C. Thereis
only one further theoretical limitation, and this is made by the fact that rate of working
of the applied stresses must be positive, and so 6”;; e;; must be positive. If this is
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substituted in equation (4) an inequality results that lays certain limits on the theo-
retical possibilities for C.

The variation of B with 2./, but not its variation with 2., can be found from
the results of tests in simple shear, for in this case

€13 = B(Z/z, 0) G-
If in fact the power law relation e, = (6,,/4)" holds, then
B(X'5, 0) = (X/p)¥n—1)/4n,

An interesting series of predictions concerning the behaviour of glaciers can
be made by considering the effect of adding a small stress to a large stress already
present. If equation (5) were true, then it could be said that the small addition does
not affect X', very much, particularly if the added stress components are not adding
directly to stress components already present — if a compression is added to a body
deforming by shear, for example. Thus if equation (5) were true, the material would
react to this new stress exactly as though it were a Newtonian liquid of viscosity

7 = 1/2BZ,).
If in addition the power law relation holds, then we can use equation (6) to write
7 = AY2X/ )in—1) Q)]

This equation is similar to one derived by Nye (%) to explain the flow in the upper
layers of the Junfraufirn; and there are several examples in glacier theory where
this situation occurs, and we shall consider some of them briefly below, but first
we ought to consider what effect the failure of equation (5) would have.

First we can note that it will be true to assume that neither 2%.’, nor 2./, will
change greatly in magnitude, though it is of course possible that 2.’; might change
from zero to some small quantity, as will occur in the case mentioned above where
a small uniaxial compression is added to a larger shear stress. Thus we shall expect
the effect of the small addition on the first term in equation (4) to be small. The
second term will give an apparent Newtonian viscosity exactly as on the simpler
theory, with exception that it may be added to an already present first term. This
means that the added deformation will be apparently Newtonian provided the third
term is small. This third term, however, if it is large, will give an added flow that is
essentially non-Newtonian since in general it is proportional to the product of two
stresses. We thus see that the general ideas derived on the assumptions contained
in the simpler theory may not be strictly true if the contribution of the third term
in equation (4) is large. With this warning, we can now consider the individual cases.

(@) The closing of tunnels in rapidly deforming ice. Nye (1°) has shown that the
rate of closing of tunnels dug into relatively smooth glaciers can be predicted using
the flow law determined in the laboratory on the assumption that the closure is due
to the weight of the overlying ice; in this theory he assumes that equation (5) is valid.
However in those cases where the tunnel is below an ice fall (1°) (') the rate of
closure is far larger. This effect can be understood if we realise that at such regions
of a glaciers there is a large longitudinal stress acting in the ice, which, throughout
its depth is undergoing a rapid compression (!!). If we assume that this stress in the
ice is large compared with the stresses due to the presence of the tunnel, and that
the tunnel does not seriously modify the larger stress, then we can apply the ideas
of a quasi-viscous closure of the tunnel and use the normal viscous closure law

s = p/2v,

where s is the closure rate and p the overburden pressure, the appropriate viscosity
being given by equation (7). We thus expect the closure of such a tunnel to be pro-
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Fig. 3 — A graph of the rate of closure of the tunnel in Austerdalsbreen against
the pressure due to the overlying ice.

portional to p, and for the Austerdalsbre tunnel (*). this is approximately true as
can be seen in Fig. 3. Since detailed measurement of the deformation allowed the
stress deviator to be calculated for the ice round this tunnel, we can use equation (7)
to predict the slope of this line. Unfortunately, this does not give good agreement;
the viscosity calculated from the stress deviator is 2.3 x 10%¢ poise, whereas the value
needed to account for the tunnel closure using the viscous theory is 3 X 102 poise.
This disagreement could be due to a failure of the assumption that everywhere the
stresses caused by the tunnel are small compared with those due to the flow of the
glacier, for as soon as this assumption breaks down, the result is a rapid increase
in the rate of flow, or a rapid decrease in the apparent viscosity.

(b) Disappearance of surface irregularities in rapidly deforming ice. In exactly
the same way as we considered in the case of the tunnels, any other irregularity in
the glacier which creates stresses round itself will cause the ice to flow more rapidly
if large stresses are already present. Thus a crevasse or a surface wave will tend to
disappear due to the flow of ice under its own weight, and these effects will be
much larger, and will be calculable on a simple viscous theory, provided that, due
to flow, the ice in the neighbourhood has large stresses in it already. Again the place
where we would expect these effects to be most marked is below ice falls, for it is
here that a large longitudinal compressive stress develops in the ice. This effect may
act in addition to the other mechanisms discussed by Nye (%) which can cause the
disappearance of wave ogives.

(c) Flow of the ice past obstructions in the bed. According to Weertman’s theory
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of the slip of a glacier on its bed (*%), a glacier overcomes the larger obstacles by
flowing past them. This flow will be due to the stress concentrations caused by the
obstacles, which will be superposed on any stresses already present in the ice. Unlike
the case of irregularities on the surface, any flowing glacier will have quite large
stresses due to flow in the neighbourhood, since the shear stress on the bed of most
flowing, temperate glaciers is about the same (1), This effect will be of similar impor-
tance in most glaciers, but very fast flowing glaciers, or glaciers undergoing rapid
longitudinal compression, may have somewhat larger flow stresses and hence be
able to flow past obstacles more easily. This may help to explain the greater erosive
power of glacier below ice falls. Another possible result of this theory, is that the
value of n in equation (5) of Weertman’s paper ought perhaps to be less than the value
in the simple flow law, while the value of B should be greater.

(d) Insertion of a ball into the ice. Haefeli (*°) has attempted to measure the
«viscosity» of glacier ice by pressing a ball into it and measuring the rate at which
it sinks. It is obvious from what we have said that this can only be expected to give
an answer which is independent of the load, provided that all the loads used are
sufficiently small for the stress they impart to the ice to be small compared with the
stresses caused by glacier flow. In Haefeli’s case this condition was not satisfied,
for the ice was in the Z"Mutt Glacier, where the flow is quite smooth, and the stresses
under the ball were up to 10 Kg./cm.?; it is therefore not very surprising that his
results do not give a straight line through the origin when sinking velocity is plotted
against load, but in principle this method could be used with smaller loads to deter-
mine the value of the function B in rapidly flowing ice.

(e) Flow of the upper layers of a glacier in compressing or extending flow. In a
glacier which has large longitudinal stresses either tensile or compressive, the shear
stress caused by the weight of overlying ice is, at least in the upper layers, a small
addition to the large longitudinal stress. (Nye (1°) has considered this case, and he
showed that the flow in the upper layers of the Jungfraufirn could be accounted for
quite accurately by regarding it as due to a superposition of a longitudinal strain
caused by the tensile stress and a shear strain computed using an effective viscosity
determined by the longitudinal stress. Full details of this calculation, which is generally
applicable to glaciers undergoing extending or compressive flow, are given in Nye’s
paper, and it is mentioned here solely to show that the idea introduced by Nye of
an effective viscosity for the effects of small added stresses is an example of the law
considered here, and that it has the other applications mentioned in sections(a)
to (d) above.
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APPENDIX

(A) Derivation of Equation (2).

In an isotropic meterial, or in a material whose anisotropy is entirely due to
the action of the stress, and which must therefore have the same symmetry as the
stress, the flow tensor must also have the same symmetry as the stress. Thus the
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individual components of the strain rate tensor must be related to the stress tensor
by terms which can contain an arbitrary function of the invariants of the stress tensor,
but can only otherwise contain the stress components in the form

= A(leEZ’ZS) 8u + 3(21’22723) Gy + C(Zl’ 22’ 3) Gik Okj +
+ D(ED 22,23) Gik Okl Olj + E(Eb 229 E'&) Gik Okl Olm Omj +

The fourth and further terms can be shown to be expressible in terms like the first
three as a result of the Cayley-Hamilton Theorem in matrix algebra. In our notation
this theorem can be written

Gik Okl Olj — 21 Gik Okj — Xz Gij — 243 O0jj = 0,

and so can be used to rewrite these terms in the form of the earlier ones. This means
that the most general form for the relation is that written as equation (2).

(B) Derivation of the flow law resulting from Nye’s assumptions

In this section we shall consider the effect on equation (4) of making either or
both of the following assumptions: (i) that the components of strain rate are propor-
tional to the components of the stress deviator; (ii) that the second invariant of the
strain rate tensor is a function of the second invariant of the stress deviator only.

Assumption (i) implies that the principal strain rates are proportional to the
principal stress deviators.

This can be written e,/c’; = e)/c’, = e,/6” 5, and substituting for e;, e, and e; from
equation (4)

2
— 322' CE 5, 26" + BE 5,25 + C/5. 256"y
Z/ C(le,zla)/ff 2 + B(le»zls) + C(E/z,zls)c 2

Xy O 5, X907 + B3, 2y + CX'p 2" 075

H

WNW‘I\J

and B(X',, ¥, can be subtracted from each of these expressions. After this has
been done, C(X'5, X’5) occurs in all terms, and so can be divided out provided it
is not zero. The resulting expression is

2 2
—:;2/2/6/1 +0')=— 2'2/6 s+ 0= -3 DN

But this equation is clearly not generally true, for example it is not true if 6’y = 1,
6’y = — 1 and 6’3 = 0. Thus the assumption that C(X’5, 2'5) is not zero must be
false, and so equation (4) reduces to

e;j = BZ'5, 2'y) Gy ®)
If in addition assumption (ii) holds, then
1
E, = éeij ejj = f(z/z), (&)
and if we substitute for e;; from (8), we obtain
Ez = BZ(Z,zy Z/s) Z/%
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and the right hand side of this must, according to (9), be a function of 2’, only,
so that B must be a function of X', only, which reduces equation (8) to equation (5).

If finally we consider the effect of assumption (ii) without assumption (i), we
can substitute for e; in equation (9) from equation (4), and then, after certain
algebraic rearrangements, using the Caley-Hamilton Theorem and the fact 2./, = 0,
we obtain

By = B BTy + 3 B B O By s + 5 CCE 0 B,

and if this is a function of X', only, then either B and C must have a very special
form or else one of B and C must be zero and the other must be a function of 2/,
only. However if B is zero, and C is a function of 2. , only, then the rate of working is

ejc;j =3 CX'H2;,

and if the sign of all the stress components is changed, 2.’, does not change. and so
C does not change, but 2./, changes sign. However the rate of working must always
be positive and so this particular possible result of the assumption is shown to be
false. This suggests that assumption (ii) by itself makes (5) very likely, and if (5)
breaks down for any initially isotropic material, only two possibilites seem likely.
These are first that assumption (i) remains true so that C is zero and B a function of
both X/, and X’;, and second that equation (4) has to be used in full. Experiments
to investigate the presence of expansion or contraction in shear tests of the kind
considered in the section on applications to the theory of glacier flow, would distin-
guish between these two possibilities.
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